Dany jest trójkąt \(ABC\), w którym \(|AB|=6\), \(|BC|=5\), \(|AC|=10\).
Oceń prawdziwość poniższych stwierdzeń. Wybierz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe. Cosinus kąta \(ABC\) jest równy \((-0,65)\).Trójkąt \(ABC\) jest rozwartokątny.
Cosinus kąta \(ABC\) jest równy \((-0,65)\).
Dany jest kąt o mierze \(\alpha\) taki, że \(sin\alpha=\frac{4}{5}\) oraz \(90°\lt\alpha\lt180°\).
Oceń prawdziwość poniższych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, albo F - jeśli jest fałszywe. Dla kąta \(\alpha\) spełnione jest równanie \(cos\alpha=-\frac{3}{5}\)Dla kąta \(\alpha\) spełnione jest równanie \(|tg\alpha|=\frac{3}{4}\)
Dla kąta \(\alpha\) spełnione jest równanie
Dany jest prostokąt \(ABCD\), w którym \(|AD|=2\). Kąt \(BDA\) ma miarę \(\alpha\), taką, że \(tg\alpha=2\). Przekątna \(BD\) i prosta przechodząca przez wierzchołek \(C\) prostopadła do \(BD\) przecinają się w punkcie \(E\) (zobacz rysunek).
Oblicz długość odcinka \(|CE|\).
Dany jest prostopadłościan \(ABCDEFGH\), w którym prostokąty \(ABCD\) i \(EFGH\) są jego postawami. Odcinek \(BH\) jest przekątną tego prostopadłościanu.
Zadanie 1.
Na którym rysunku prawidłowo narysowano, oznaczono i podpisano kąt \(\alpha\) pomiędzy przekątną \(BH\) prostopadłościanu a jego ścianą boczną \(ADHE\)? Zaznacz właściwą odpowiedź spośród podanych.
A.
B.
C.
D.
Zadanie 2.
W prostopadłościanie
Pole prostokąta jest równe \(16\), a przekątne tego prostokąta przecinają się pod kątem ostrym \(\alpha\), takim, że \(sin\alpha=0,2\). Długość przekątnej tego prostokąta jest równa:
W trójkącie prostokątnym sinus jednego z kątów ostrych jest równy \(\frac{8}{17}\), a przeciwprostokątna ma długość \(34\). Dłuższa z przyprostokątnych tego trójkąta ma długość równą:
Przekątna graniastosłupa prawidłowego czworokątnego o długości \(d\) jest nachylona do płaszczyzny podstawy pod kątem a takim, że \(sin\alpha=\frac{\sqrt{2}}{2}\). Objętość tego graniastosłupa wyraża się wzorem:
Dany jest trójkąt równoramienny ABC, w którym podstawa AB ma długość 12, a każde z ramion AC i BC ma długość równą 10. Punkt D jest środkiem ramienia BC (zobacz rysunek).
Oblicz sinus kąta \(\alpha\), jaki środkowa AD tworzy z ramieniem AC trójkąta ABC.
Prosta \(k\) jest nachylona do osi \(Ox\) pod kątem ostrym \(\alpha\), takim, że \(cos\alpha=\frac{\sqrt{3}}{3}\). Wyznacz współczynnik kierunkowy prostej \(k\).
W ostrosłupie prawidłowym sześciokątnym \(ABCDEFS\), którego krawędź podstawy \(a\) ma długość \(8\) (zobacz rysunek), ściana boczna jest nachylona do płaszczyzny podstawy pod kątem \(\alpha=60°\). Oblicz cosinus kąta między krawędzią boczną a płaszczyzną podstawy tego ostrosłupa.
W pewnym trójkącie prostokątnym przeciwprostokątna jest trzy razy dłuższa od jednej z przyprostokątnych. Wartość cosinusa mniejszego kąta ostrego tego trójkąta jest równa:
W graniastosłupie prawidłowym czworokątnym o podstawach \(ABCD\) i \(A_{1}B_{1}C_{1}D_{1}\) (jak na rysunku) krawędź boczna jest trzy razy dłuższa od krawędzi podstawy. Z wierzchołka \(B\) poprowadzono odcinek \(BE\), którego koniec \(E\) jest środkiem krawędzi \(A_{1}D_{1}\). Długość \(BE\) jest równa \(4\sqrt{41}\). Oblicz objętość graniastosłupa i wyznacz sinus kąta nachylenia odcinka \(BE\) do płaszczyzny podstawy graniastosłupa.
Długość krawędzi bocznej ostrosłupa prawidłowego czworokątnego \(ABCDS\) jest równa \(12\) (zobacz rysunek). Krawędź boczna tworzy z wysokością tego ostrosłupa kąt \(α\) taki, że \(tgα=\frac{2}{\sqrt{5}}\). Oblicz objętość tego ostrosłupa.
Długość krawędzi podstawy ostrosłupa prawidłowego czworokątnego jest równa \(6\). Pole powierzchni całkowitej tego ostrosłupa jest cztery razy większe od pola jego podstawy. Kąt \(α\) jest kątem nachylenia krawędzi bocznej tego ostrosłupa do płaszczyzny podstawy (zobacz rysunek). Oblicz cosinus kąta \(α\).
W trójkącie prostokątnym jedna z przyprostokątnych ma długość \(5\), a przeciwprostokątna ma długość \(13\). Sinus większego kąta ostrego tego trójkąta jest równy:
W ostrosłupie czworokątnym prawidłowym pole jednej ściany bocznej wynosi \(12\), a cosinus kąta nachylenia ściany bocznej do płaszczyzny podstawy jest równy \(\frac{1}{3}\). Oblicz objętość tego ostrosłupa.
W ostrosłupie prawidłowym trójkątnym \(ABCS\) krawędź podstawy ma długość \(a\). Pole powierzchni bocznej tego ostrosłupa jest dwa razy większe od pola jego podstawy. Oblicz cosinus kąta nachylenia krawędzi bocznej tego ostrosłupa do płaszczyzny jego podstawy.
Dany jest ostrosłup prawidłowy czworokątny o wysokości \(H=16\). Cosinus kąta nachylenia krawędzi bocznej do płaszczyzny podstawy tego ostrosłupa jest równy \(\frac{3}{5}\). Oblicz pole powierzchni bocznej tego ostrosłupa.
W trapezie prostokątnym \(ABCD\) o podstawach \(AB\) i \(CD\) przekątna \(AC\) jest prostopadła do ramienia \(BC\), dłuższa podstawa \(AB\) ma długość \(9\), a sinus kąta \(CAD\) jest równy \(\frac{\sqrt{3}}{3}\). Oblicz pole tego trapezu.
Na trójkącie opisano okrąg. Wierzchołki trójkąta podzieliły ten okrąg na łuki, których długości pozostają w stosunku \(10:6:4\). Odczytaj z tablic i zapisz przybliżoną wartość cosinusa najmniejszego kąta tego trójkąta.
W trójkącie prostokątnym kąty ostre mają miary \(α,β\), przeciwprostokątna ma długość \(13\), oraz \(sinα+sinβ=\frac{17}{13}\) i \(sinα-sinβ=\frac{7}{13}\). Wynika z tego, że:
Podstawą graniastosłupa prawidłowego czworokątnego jest kwadrat o boku długości \(2\), a przekątna ściany bocznej ma długość \(3\) (zobacz rysunek). Kąt, jaki tworzą przekątne ścian bocznych tego graniastosłupa wychodzące z jednego wierzchołka, ma miarę \(α\).
Wtedy wartość \(sin\frac{α}{2}\) jest równa:
W trójkącie \(ABC\) dane są długości boków \(|AB|=15\) i \(|AC|=12\) oraz \(cosα=\frac{4}{5}\), gdzie \(α=\sphericalangle BAC\). Na bokach \(AB\) i \(AC\) tego trójkąta obrano punkty odpowiednio \(D\) i \(E\) takie, że \(|BD|=2|AD|\) i \(|AE|=2|CE|\) (zobacz rysunek).
Oblicz pole:
a) trójkąta \(ADE\)
b) czworokąta \(BCED\)
Podstawą ostrosłupa prawidłowego trójkątnego \(ABCS\) jest trójkąt równoboczny \(ABC\). Wysokość \(SO\) tego ostrosłupa jest równa wysokości jego podstawy. Objętość tego ostrosłupa jest równa \(27\). Oblicz pole powierzchni bocznej ostrosłupa \(ABCS\) oraz cosinus kąta, jaki tworzą wysokość ściany bocznej i płaszczyzna podstawy ostrosłupa.
Wysokość graniastosłupa prawidłowego czworokątnego jest równa \(16\). Przekątna graniastosłupa jest nachylona do płaszczyzny jego podstawy pod kątem, którego cosinus jest równy \(\frac{3}{5}\). Oblicz pole powierzchni całkowitej tego graniastosłupa.
Wysokość graniastosłupa prawidłowego czworokątnego jest równa \(16\). Przekątna graniastosłupa jest nachylona do płaszczyzny jego podstawy pod kątem, którego cosinus jest równy \(\frac{3}{5}\). Oblicz pole powierzchni całkowitej tego graniastosłupa.
W czworościanie foremnym, którego krawędź ma długość \(a\), kąt \(α\) jest kątem nachylenia krawędzi bocznej do płaszczyzny podstawy. Oblicz wartość wyrażenia \(cos^2(90°-α)-cos^2α\).
Dany jest trójkąt prostokątny o kącie ostrym \(α\). Jeśli \(sinα=\frac{3}{5}\) i przeciwprostokątna ma długość \(20\), to dłuższa przyprostokątna ma długość:
W graniastosłupie prawidłowym czworokątnym wysokość graniastosłupa jest o \(4\) krótsza od przekątnej podstawy i o \(8\) krótsza od przekątnej graniastosłupa. Oblicz sinus kąta pomiędzy przekątną graniastosłupa a płaszczyzną podstawy.
Dany jest ostrosłup prawidłowy trójkątny. Pole powierzchni bocznej tego ostrosłupa jest równe \(24\), a kąt płaski ściany bocznej przy podstawie ma miarę \(α\) i \(tgα=2\). Wyznacz cosinus kąta nachylenia ściany bocznej ostrosłupa do płaszczyzny jego podstawy.
W ostrosłupie prawidłowym czworokątnym \(ABCDS\) o podstawie \(ABCD\) i wierzchołku \(S\) trójkąt \(ACS\) jest równoboczny i ma bok długości \(8\). Oblicz sinus kąta nachylenia ściany bocznej do płaszczyzny podstawy tego ostrosłupa (zobacz rysunek).
Podstawą ostrosłupa \(ABCDS\) jest romb \(ABCD\) o boku długości \(4\). Kąt \(ABC\) rombu ma miarę \(120°\) oraz \(|AS|=|CS|=10\) i \(|BS|=|DS|\). Oblicz sinus kąta nachylenia krawędzi \(BS\) do płaszczyzny podstawy ostrosłupa.
Podstawą ostrosłupa \(ABCDS\) jest romb \(ABCD\) o boku długości \(4\). Kąt \(ABC\) rombu ma miarę \(120°\) oraz \(|AS|=|CS|=10\) i \(|BS|=|DS|\). Oblicz sinus kąta nachylenia krawędzi \(BS\) do płaszczyzny podstawy ostrosłupa.