Każda z krawędzi podstawy trójkątnej ostrosłupa ma długość \(10\sqrt{3}\), a każda jego krawędź boczna ma długość \(15\). Oblicz wysokość tego ostrosłupa.
Dany jest ostrosłup prawidłowy trójkątny \(ABCS\) o podstawie \(ABC\). Punkty \(D\), \(E\) i \(F\) są środkami – odpowiednio – krawędzi bocznych \(AS\), \(BS\) i \(CS\) (zobacz rysunek).
Stosunek objętości ostrosłupa \(DEFS\) do objętości ostrosłupa \(ABCS\) jest równy:
Dany jest sześcian \(ABCDEFGH\) o krawędzi długości \(a\). Punkty \(E,F,G,B\) są wierzchołkami ostrosłupa \(EFGB\) (zobacz rysunek).
Pole powierzchni całkowitej ostrosłupa \(EFGB\) jest równe:
Wysokość ściany bocznej ostrosłupa prawidłowego sześciokątnego jest \(2\) razy dłuższa od krawędzi jego podstawy. Stosunek pola powierzchni bocznej tego ostrosłupa do pola jego podstawy jest równy:
Ostrosłupy prawidłowe trójkątne \(O_{1}\) i \(O_{2}\) mają takie same wysokości. Długość krawędzi podstawy ostrosłupa \(O_{1}\) jest trzy razy dłuższa od długości krawędzi podstawy ostrosłupa \(O_{2}\). Stosunek objętości ostrosłupa \(O_{1}\) do objętości ostrosłupa \(O_{2}\) jest równy:
W ostrosłupie \(ABCS\) podstawą jest trójkąt równoboczny \(ABC\) o boku długości \(4\), ściana boczna \(BCS\) też jest trójkątem równobocznym, a spodek \(O\) wysokości \(SO\) ostrosłupa jest środkiem wysokości \(AD\) trójkąta \(ABC\) (jak na rysunku).
Oblicz objętość i pole powierzchni całkowitej tego ostrosłupa.
Dane są graniastosłup i ostrosłup o takich samych podstawach. Liczba wszystkich wierzchołków tego graniastosłupa jest o 9 większa od liczby wszystkich wierzchołków tego ostrosłupa. Podstawą każdej z tych brył jest:
Objętość ostrosłupa prawidłowego czworokątnego, w którym wysokość jest dwa razy dłuższa od krawędzi podstawy, jest równa \(144\). Długość krawędzi podstawy tego ostrosłupa jest równa:
W ostrosłupie prawidłowym sześciokątnym \(ABCDEFS\), którego krawędź podstawy \(a\) ma długość \(8\) (zobacz rysunek), ściana boczna jest nachylona do płaszczyzny podstawy pod kątem \(\alpha=60°\). Oblicz cosinus kąta między krawędzią boczną a płaszczyzną podstawy tego ostrosłupa.
Dany jest ostrosłup prawidłowy czworokątny \(ABCDS\), którego krawędź boczna ma długość \(6\) (zobacz rysunek). Ściana boczna tego ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem, którego tangens jest równy \(\sqrt{7}\). Oblicz objętość tego ostrosłupa.
Na rysunku przedstawiono ostrosłup prawidłowy czworokątny \(ABCDS\) o podstawie \(ABCD\).
Kąt nachylenia krawędzi bocznej \(SA\) ostrosłupa do płaszczyzny podstawy \(ABCD\) to:
Przekątna podstawy ostrosłupa czworokątnego prawidłowego jest dwa razy dłuższa od jego wysokości. Kąt nachylenia krawędzi bocznej do płaszczyzny podstawy w tym ostrosłupie ma miarę:
Podstawą ostrosłupa \(ABCDE\) jest kwadrat, a spodek \(F\) wysokości \(EF\) ostrosłupa jest środkiem krawędzi \(AD\) (patrz rysunek). Ponadto wiadomo, że każda z dwóch dłuższych krawędzi bocznych tego ostrosłupa ma długość \(12\sqrt{5}cm\) i jest nachylona do płaszczyzny podstawy pod kątem \(60°\). Oblicz objętość tego ostrosłupa.
Podstawą ostrosłupa prawidłowego czworokątnego \(ABCDS\) jest kwadrat \(ABCD\) (zobacz rysunek). Wszystkie ściany boczne tego ostrosłupa są trójkątami równobocznymi. Miara kąta \(SAC\) jest równa:
Długość krawędzi bocznej ostrosłupa prawidłowego czworokątnego \(ABCDS\) jest równa \(12\) (zobacz rysunek). Krawędź boczna tworzy z wysokością tego ostrosłupa kąt \(α\) taki, że \(tgα=\frac{2}{\sqrt{5}}\). Oblicz objętość tego ostrosłupa.
Podstawą ostrosłupa jest kwadrat \(ABCD\) o boku długości \(4\). Krawędź boczna \(DS\) jest prostopadła do podstawy i ma długość \(3\) (zobacz rysunek).
Pole ściany \(BCS\) tego ostrosłupa jest równe:
Podstawą ostrosłupa \(ABCDS\) jest prostokąt o polu równym \(432\), a stosunek długości boków tego prostokąta jest równy \(3:4\). Przekątne podstawy \(ABCD\) przecinają się w punkcie \(O\). Odcinek \(SO\) jest wysokością ostrosłupa (zobacz rysunek). Kąt \(SAO\) ma miarę \(60°\). Oblicz objętość tego ostrosłupa.
Długość krawędzi podstawy ostrosłupa prawidłowego czworokątnego jest równa \(6\). Pole powierzchni całkowitej tego ostrosłupa jest cztery razy większe od pola jego podstawy. Kąt \(α\) jest kątem nachylenia krawędzi bocznej tego ostrosłupa do płaszczyzny podstawy (zobacz rysunek). Oblicz cosinus kąta \(α\).
W ostrosłupie czworokątnym prawidłowym pole jednej ściany bocznej wynosi \(12\), a cosinus kąta nachylenia ściany bocznej do płaszczyzny podstawy jest równy \(\frac{1}{3}\). Oblicz objętość tego ostrosłupa.
W ostrosłupie prawidłowym trójkątnym krawędź boczna jest trzy razy dłuższa od wysokości ostrosłupa. Krawędź podstawy ma długość \(12\). Oblicz objętość i pole powierzchni bocznej tego ostrosłupa.
W ostrosłupie prawidłowym trójkątnym \(ABCS\) krawędź podstawy ma długość \(a\). Pole powierzchni bocznej tego ostrosłupa jest dwa razy większe od pola jego podstawy. Oblicz cosinus kąta nachylenia krawędzi bocznej tego ostrosłupa do płaszczyzny jego podstawy.
Dany jest ostrosłup prawidłowy czworokątny o wysokości \(H=16\). Cosinus kąta nachylenia krawędzi bocznej do płaszczyzny podstawy tego ostrosłupa jest równy \(\frac{3}{5}\). Oblicz pole powierzchni bocznej tego ostrosłupa.
Podstawą ostrosłupa jest kwadrat \(KLMN\) o boku długości \(4\). Wysokością tego ostrosłupa jest krawędź \(NS\), a jej długość też jest równa \(4\) (zobacz rysunek).
Kąt \(α\), jaki tworzą krawędzie \(KS\) i \(MS\), spełnia warunek:
Na rysunku przedstawiono ostrosłup prawidłowy czworokątny \(ABCDS\) o podstawie \(ABCD\).
Kąt nachylenia krawędzi bocznej \(SA\) ostrosłupa do płaszczyzny podstawy \(ABCD\) to:
W ostrosłupie prawidłowym trójkątnym wysokość ściany bocznej prostopadła do krawędzi podstawy ostrosłupa jest równa \(\frac{5\sqrt{3}}{4}\), a pole powierzchni bocznej tego ostrosłupa jest równe \(\frac{15\sqrt{3}}{4}\). Oblicz objętość tego ostrosłupa.
Siatka ostrosłupa prawidłowego czworokątnego składa się z kwadratu i czterech trójkątów (rysunek obok). Pole każdej z wymienionych figur jest równe \(4\). Długość krawędzi bocznej tego ostrosłupa jest równa:
Dany jest sześcian \(ABCDEFGH\) o krawędzi długości \(10\) (rysunek niżej). Przez środki krawędzi \(AB\), \(AD\) i \(AE\) poprowadzono płaszczyznę \(p\), a przez wierzchołki \(B\), \(D\) i \(E\) − płaszczyznę \(q\) (rys.). Oblicz różnicę wysokości powstałych ostrosłupów o wspólnym wierzchołku \(A\).
Trójkąt równoboczny \(ABC\) jest podstawą ostrosłupa prawidłowego \(ABCS\), w którym ściana boczna jest nachylona do płaszczyzny podstawy pod kątem \(60°\), a krawędź boczna ma długość \(7\) (zobacz rysunek). Oblicz objętość tego ostrosłupa.
Podstawą ostrosłupa prawidłowego czworokątnego \(ABCDS\) jest kwadrat \(ABCD\). Wszystkie ściany boczne tego ostrosłupa są trójkątami równobocznymi. Miara kąta \(ASC\) jest równa:
Podstawą ostrosłupa prawidłowego trójkątnego \(ABCS\) jest trójkąt równoboczny \(ABC\). Wysokość \(SO\) tego ostrosłupa jest równa wysokości jego podstawy. Objętość tego ostrosłupa jest równa \(27\). Oblicz pole powierzchni bocznej ostrosłupa \(ABCS\) oraz cosinus kąta, jaki tworzą wysokość ściany bocznej i płaszczyzna podstawy ostrosłupa.
Dany jest ostrosłup prawidłowy trójkątny. Promień okręgu wpisanego w podstawę jest równy \(6\). Ściana boczna tworzy z płaszczyzną podstawy kąt \(60°\). Oblicz objętość i pole powierzchni bocznej bryły.
Podstawą ostrosłupa \(ABCDS\) jest prostokąt, którego boki pozostają w stosunku \(3:4\), a pole jest równe \(192\) (zobacz rysunek). Punkt \(E\) jest wyznaczony przez przecinające się przekątne podstawy, a odcinek \(SE\) jest wysokością ostrosłupa. Każda krawędź boczna tego ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem \(30°\). Oblicz objętość ostrosłupa.
Każda krawędź ostrosłupa prawidłowego trójkątnego ma długość \(9\) (ostrosłup taki jest nazywany czworościanem foremnym). Wysokość tego ostrosłupa jest równa:
W ostrosłupie prawidłowym czworokątnym ściana boczna o polu równym \(10\) jest nachylona do płaszczyzny podstawy pod kątem \(60°\). Oblicz objętość tego ostrosłupa.
Objętość ostrosłupa prawidłowego trójkątnego \(ABCS\) jest równa \(27\sqrt{3}\). Długość krawędzi \(AB\) podstawy ostrosłupa jest równa \(6\) (zobacz rysunek). Oblicz pole powierzchni całkowitej tego ostrosłupa.
Z sześcianu \(ABCDEFGH\) o krawędzi długości a odcięto ostrosłup \(ABDE\) (zobacz rysunek).
Ile razy objętość tego ostrosłupa jest mniejsza od objętości pozostałej części sześcianu?
Na rysunkach poniżej przedstawiono siatki dwóch ostrosłupów.
Pole powierzchni całkowitej ostrosłupa o krawędzi \(a\) jest dwa razy większe od pola powierzchni całkowitej ostrosłupa o krawędzi \(b\). Ile razy objętość ostrosłupa o krawędzi \(a\) jest większa od objętości ostrosłupa o krawędzi \(b\)?
Jeśli wszystkie krawędzie ostrosłupa prawidłowego czworokątnego mają jednakowe długości, to ściana boczna jest nachylona do płaszczyzny podstawy pod takim kątem \(α\), że:
Dany jest ostrosłup prawidłowy trójkątny. Ściana boczna tworzy z płaszczyzną podstawy kąt \(30°\). Promień okręgu opisanego na podstawie jest równy \(2\sqrt{3}\). Oblicz objętość i pole powierzchni bocznej podanej bryły.
Ostrosłup i graniastosłup mają równe pola podstaw i równe wysokości. Objętość ostrosłupa jest równa \(81\sqrt{3}\). Objętość graniastosłupa jest równa:
Podstawą ostrosłupa prawidłowego jest kwadrat. Wysokość ściany bocznej tego ostrosłupa jest równa \(22\), a tangens kąta nachylenia ściany bocznej ostrosłupa do płaszczyzny jego podstawy jest równy \(\frac{4\sqrt{6}}{5}\). Oblicz objętość tego ostrosłupa.
Objętość ostrosłupa prawidłowego czworokątnego jest równa \(432\), a krawędź podstawy tego ostrosłupa ma długość \(12\). Wysokość tego ostrosłupa jest równa:
W ostrosłupie prawidłowym czworokątnym \(ABCDS\) (zobacz rysunek) przekątna \(AC\) podstawy ma długość \(4\sqrt{2}\). Kąt \(ASC\) między przeciwległymi krawędziami bocznymi ostrosłupa ma miarę \(60°\). Oblicz objętość tego ostrosłupa.
Objętość ostrosłupa prawidłowego trójkątnego \(ABCS\) (tak jak na rysunku) jest równa \(72\), a promień okręgu wpisanego w podstawę \(ABC\) tego ostrosłupa jest równy \(2\). Oblicz tangens kąta między wysokością tego ostrosłupa i jego ścianą boczną.
Pole podstawy prawidłowego ostrosłupa czworokątnego jest równe \(100cm^2\), a jego pole powierzchni bocznej jest równe \(260cm^2\). Oblicz objętość tego ostrosłupa.
Dany jest ostrosłup prawidłowy trójkątny. Pole powierzchni bocznej tego ostrosłupa jest równe \(24\), a kąt płaski ściany bocznej przy podstawie ma miarę \(α\) i \(tgα=2\). Wyznacz cosinus kąta nachylenia ściany bocznej ostrosłupa do płaszczyzny jego podstawy.
W ostrosłupie prawidłowym czworokątnym \(ABCDS\) o podstawie \(ABCD\) i wierzchołku \(S\) trójkąt \(ACS\) jest równoboczny i ma bok długości \(8\). Oblicz sinus kąta nachylenia ściany bocznej do płaszczyzny podstawy tego ostrosłupa (zobacz rysunek).
W graniastosłupie prawidłowym czworokątnym \(ABCDEFGH\) przekątna \(AC\) podstawy ma długość \(4\). Kąt \(ACE\) jest równy \(60°\). Oblicz objętość ostrosłupa \(ABCDE\) przedstawionego na poniższym rysunku.
Podstawą ostrosłupa \(ABCDS\) jest romb \(ABCD\) o boku długości \(4\). Kąt \(ABC\) rombu ma miarę \(120°\) oraz \(|AS|=|CS|=10\) i \(|BS|=|DS|\). Oblicz sinus kąta nachylenia krawędzi \(BS\) do płaszczyzny podstawy ostrosłupa.
Piramida ma kształt ostrosłupa prawidłowego czworokątnego, którego wysokość jest równa \(6\), a długość krawędzi bocznej jest równa \(2\sqrt{15}\). Oblicz miarę kąta nachylenia ściany bocznej piramidy do podstawy.
Podstawą ostrosłupa \(ABCDW\) jest prostokąt \(ABCD\). Krawędź boczna \(DW\) jest wysokością tego ostrosłupa. Krawędzie boczne \(AW\), \(BW\) i \(CW\) mają następujące długości: \(|AW|=6\), \(|BW|=9\), \(|CW|=7\). Oblicz objętość tego ostrosłupa.
Podstawą ostrosłupa \(ABCDS\) jest romb \(ABCD\) o boku długości \(4\). Kąt \(ABC\) rombu ma miarę \(120°\) oraz \(|AS|=|CS|=10\) i \(|BS|=|DS|\). Oblicz sinus kąta nachylenia krawędzi \(BS\) do płaszczyzny podstawy ostrosłupa.
Podstawą ostrosłupa \(ABCDE\) jest prostokąt \(ABCD\). Krawędź \(AE\) jest wysokością ostrosłupa (zobacz rysunek). Oblicz długość krawędzi \(EC\), jeśli wiadomo, że \(AE=6\), \(BE=22\), \(DE=9\).
Rysunek przedstawia fragment siatki ostrosłupa prawidłowego czworokątnego, którego wszystkie krawędzie mają po \(2 cm\) długości.
a) Uzupełnij powyższy rysunek – dorysuj brakujący element siatki ostrosłupa.
b) Oblicz łączną długość wszystkich krawędzi tego ostrosłupa.
Suma długości wszystkich krawędzi ostrosłupa prawidłowego sześciokątnego jest równa \(450\). Krawędź boczna jest w tym ostrosłupie czterokrotnie dłuższa od krawędzi podstawy.
Długość krawędzi podstawy tego ostrosłupa jest równa:
Staś ma dwa jednakowe klocki w kształcie ostrosłupa prawidłowego czworokątnego, każdy o polu powierzchni całkowitej \(80 cm^2\). Podstawa i ściana boczna klocka mają równe pola. Staś skleił oba klocki podstawami tak, jak na rysunku.
Jakie pole powierzchni ma bryła otrzymana przez Stasia?
Podstawą ostrosłupa o wysokości \(H\) jest kwadrat. Na rysunku przedstawiono siatkę i podano długości niektórych krawędzi tego ostrosłupa.
Oblicz objętość tego ostrosłupa.
W ostrosłupie prostym podstawą jest romb o przekątnych \(10cm\) i \(24cm\). Wysokość ostrosłupa jest dwa razy dłuższa niż bok rombu. Oblicz objętość tego ostrosłupa.
Na rysunkach przedstawiono ostrosłup prawidłowy i graniastosłup prawidłowy. Wszystkie krawędzie obu brył są jednakowej długości.
Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe. Suma długości wszystkich krawędzi ostrosłupa jest większa niż suma długości wszystkich krawędzi graniastosłupa.Całkowite pole powierzchni ostrosłupa jest większe niż całkowite
Oceń prawdziwość podanych zdań. Każdy graniastosłup prosty, który ma sześć ścian, jest prostopadłościanem.Ostrosłup, który ma sześć krawędzi, jest czworościanem.
Każdy graniastosłup prosty, który ma sześć ścian, jest prostopadłościanem.
Na rysunku przedstawiono ostrosłup prawidłowy czworokątny i sześcian. Bryły mają jednakowe podstawy i równe wysokości, a suma objętości tych brył jest równa \(36cm^3\).
Oceń prawdziwość podanych zdań. Objętość sześcianu jest trzy razy większa od objętości ostrosłupa.Krawędź sześcianu ma długość \(3cm\).
Objętość sześcianu jest trzy razy większa od objętości ostrosłupa.
Maciek rysuje siatkę ostrosłupa prawidłowego, którego podstawą jest kwadrat o środku w punkcie \(O\) i boku długości \(8\).
Czy trójkąt \(ABW\) o bokach długości odpowiednio: \(8, 5, 5\) może być ścianą boczną takiego ostrosłupa?
A) trójkąt \(ABW\) jest równoramienny
B) odległość \(OE\) jest mniejsza niż wysokość \(EW\)
Siatka ostrosłupa składa się z kwadratu i trójkątów równobocznych zbudowanych na bokach tego kwadratu.
Oceń prawdziwość podanych zdań. Wszystkie krawędzie tego ostrosłupa mają taką samą długość.Wysokość tego ostrosłupa jest mniejsza niż wysokość jego ściany bocznej.
Wszystkie krawędzie tego ostrosłupa mają taką samą długość.
Pole powierzchni bocznej ostrosłupa prawidłowego czworokątnego jest równe \(80cm^2\), a pole jego powierzchni całkowitej wynosi \(144cm^2\). Oblicz długość krawędzi podstawy i długość krawędzi bocznej tego ostrosłupa.
Piramida ma kształt ostrosłupa prawidłowego czworokątnego. Ile \(cm^2\) papieru potrzeba na wykonanie modelu tej piramidy (wraz z podstawą), w którym krawędzie podstawy mają długość \(10cm\) a wysokość \(12cm\)? Ze względu na zakładki zużycie papieru jest większe o \(5\%\).
Na rysunku przedstawiono prostokąt i dwa trójkąty równoramienne \(T_{1}\) i \(T_{2}\) oraz podano długości ich boków.
Czy te trzy wielokąty mogą być ścianami jednego ostrosłupa? Wybierz odpowiedź A albo B i jej uzasadnienie spośród 1., 2. albo 3.
A) długości boków prostokąta są równe długościom podstaw trójkątów \(T_{1}\) i \(T_{2}\).