Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
Matura próbna z matematyki (poziom podstawowy) - Operon 2010 Zadanie 32 z 2412
Zadanie nr 32. (4pkt)
W ostrosłupie prawidłowym czworokątnym pole podstawy jest równe \(100\), a pole ściany bocznej jest równe \(65\). Oblicz objętość ostrosłupa.
Rozwiązanie:
Krok 1. Obliczenie długości krawędzi podstawy.
Skoro jest to ostrosłup prawidłowy czworokątny to znaczy, że w jego podstawie znajduje się kwadrat. Wiemy, że kwadrat ten ma pole powierzchni równe \(100\), zatem:
$$P=a^2 \ ,\
100=a^2 \ ,\
a=10 \quad\lor\quad a=-10$$
Ujemny wynik oczywiście odrzucamy i zostaje nam, że krawędź boczna ma długość \(a=10\).
Krok 2. Obliczenie wysokości ściany bocznej.
W ścianie bocznej o polu powierzchni \(P_{b}=65\) mamy trójkąt o podstawie \(a=10\). To oznacza, że możemy bez przeszkód obliczyć wysokość ściany bocznej.
$$P_{b}=\frac{1}{2}ah \ ,\
65=\frac{1}{2}\cdot10\cdot h \ ,\
65=5h \ ,\
h=13$$
Krok 3. Sporządzenie rysunku pomocniczego.
Spróbujmy teraz narysować ten ostrosłup i zaznaczyć w nim obliczone przed chwilą wielkości:
Z rysunku wynika, że wysokość ostrosłupa (potrzebna do obliczenia objętości) będziemy mogli wyznaczyć z trójkąta prostokątnego, którego dolna przyprostokątna jest połową boku kwadratu (stąd też bierze się długość równa \(5\)), a przeciwprostokątna ma długość \(13\).
Krok 4. Obliczenie wysokości ostrosłupa.
Wysokość tego ostrosłupa najprościej będzie wyznaczyć z Twierdzenia Pitagorasa:
$$5^2+H^2=13^2 \ ,\
25+H^2=169 \ ,\
H^2=144 \ ,\
H=12 \quad\lor\quad H=-12$$
Ujemną wartość odrzucamy, bo wysokość nie może być ujemna, zatem \(H=12\).
Krok 5. Obliczenie objętości ostrosłupa.
Znając pole podstawy oraz wysokość ostrosłupa możemy bez przeszkód obliczyć objętość bryły:
$$V=\frac{1}{3}P_{p}\cdot H \ ,\
V=\frac{1}{3}\cdot100\cdot12 \ ,\
V=400$$
Teoria:
W trakcie opracowania
matura próbna - Operon