{tytul} Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
MATEMA tix .pl
Matematyczne wyzwania
Arkusz 2015
Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów

Arkusz 2015

Matura z matematyki (poziom podstawowy) - Czerwiec 2015 Zadanie 21 z 1572
Zadanie nr 21. (1pkt)
W ostrosłupie czworokątnym, w którym wszystkie krawędzie mają tę samą długość, kąt nachylenia krawędzi bocznej do płaszczyzny podstawy ma miarę:
A \(30°\)
B \(45°\)
C \(60°\)
D \(75°\)
Odpowiedź:      

B

Rozwiązanie:      
Krok 1. Sporządzenie rysunku poglądowego. Jeżeli ostrosłup czworokątny ma wszystkie krawędzie równej długości to na pewno w podstawie mamy kwadrat. Cały ostrosłup wyglądać będzie mniej więcej w ten sposób: Na rysunku zaznaczyliśmy sobie też dwa kąty - kąt między krawędzią i przekątną podstawy (czyli kąt \(α\)) oraz poszukiwany kąt nachylenia krawędzi bocznej do płaszczyzny podstawy (czyli kąt \(β\)). Krok 2. Wyznaczenie kąta nachylenia krawędzi bocznej do płaszczyzny podstawy. Poszukujemy miary kąta \(β\). Zwróćmy uwagę na to, że trójkąty \(ABD\) oraz \(BDS\) są trójkątami przystającymi (mają te same długości ramion bo krawędzie są sobie równe oraz mają wspólną podstawę trójkąta, która jest przekątną kwadratu). To oznacza, że na naszym rysunku \(α=β\). Kąt \(α\) ma znaną nam miarę \(45°\), bo przekątna kwadratu dzieli kąt prosty na dwie równe części, czyli \(90°:2=45°\). Skoro tak, to zgodnie z tym co sobie napisaliśmy wcześniej \(β=45°\).
Teoria:      
W trakcie opracowania
matura dodatkowa - CKE
Matematyczne wyzwania © Copyright 2023-2026 All rights reserved
Arkusz 2015 Validator CSS Validator HTML