{tytul}
MATEMA tix .pl
Zadania dla maturzysty
Ciąg arytmetyczny

Ciąg arytmetyczny

/ico/ikony_glowna/arkusze.png
Dany jest ciąg \((a_{n})\) określony wzorem \(a_{n}=-3n+5\) dla każdej liczby naturalnej \(n\ge1\). Oceń prawdziwość poniższych stwierdzeń. Wybierz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe. Liczby \(2, (-1), (-4)\) są trzema kolejnymi początkowymi wyrazami ciągu \((a_{n})\).\((a_{n})\) jest ciągiem arytmetycznym o różnicy równej \(5\). Liczby \(2, (-1), (-4)\)

/ico/ikony_glowna/arkusze.png
Dany jest ciąg \((a_{n})\) określony wzorem ogólnym: \(a_{n}=4n-9\) dla każdej liczby naturalnej \(n\ge1\). Wykaż, że ciąg \((a_{n})\) jest arytmetyczny.

/ico/ikony_glowna/arkusze.png
Trójwyrazowy ciąg \((x,y-4,y)\) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa \(6\). Oblicz wszystkie wyrazy tego ciągu.

/ico/ikony_glowna/arkusze.png
Ciąg \((a_{n})\), określony dla każdej liczby naturalnej \(n\ge1\), jest arytmetyczny. Różnica tego ciągu jest równa \(2\) oraz \(a_{8}=48\). Czwarty wyraz tego ciągu jest równy:

/ico/ikony_glowna/arkusze.png
W ciągu arytmetycznym \((a_{n})\), określonym dla każdej liczby naturalnej \(n\ge1\), \(a_{5}=-31\) oraz \(a_{10}=-66\). Różnica tego ciągu jest równa:

/ico/ikony_glowna/arkusze.png
W ciągu arytmetycznym \((a_{n})\), określonym dla każdej liczby naturalnej \(n\ge1\), \(a_{1}=-1\) i \(a_{4}=8\). Oblicz sumę stu początkowych kolejnych wyrazów tego ciągu.

/ico/ikony_glowna/arkusze.png
Liczba \(4\) jest pierwszym wyrazem pewnego ciągu arytmetycznego. Drugi wyraz tego ciągu jest równy \(x+4\), a suma trzech jego początkowych wyrazów wynosi \(16\frac{1}{2}\). Oblicz różnicę tego ciągu.

/ico/ikony_glowna/arkusze.png
W rosnącym ciągu arytmetycznym spełniony jest warunek \(a_{3}+a_{7}=28\), więc:

/ico/ikony_glowna/arkusze.png
Suma sześciu początkowych wyrazów ciągu arytmetycznego wynosi \(72\), a szósty wyraz tego ciągu jest równy \(22\). Oblicz pierwszy wyraz tego ciągu.

/ico/ikony_glowna/arkusze.png
Ciąg arytmetyczny \(a_{n}\) jest określony dla każdej liczby naturalnej \(n\ge1\). Różnica tego ciągu jest równa \(2\). Wtedy:

/ico/ikony_glowna/arkusze.png
Dany jest ciąg arytmetyczny \((a_{n})\), określony dla wszystkich liczb naturalnych \(n\ge1\). Suma dwudziestu początkowych wyrazów tego ciągu jest równa \(20a_{21}+62\). Oblicz różnicę ciągu \((a_{n})\).

/ico/ikony_glowna/arkusze.png
Ciąg arytmetyczny \(a_{n}\) jest określony dla każdej liczby naturalnej \(n\ge1\). Trzeci i piąty wyraz ciągu spełniają warunek \(a_{3}+a_{5}=58\). Wtedy czwarty wyraz tego ciągu jest równy:

/ico/ikony_glowna/arkusze.png
Ciąg \((a_{n})\), określony dla każdej liczby naturalnej \(n\ge1\), jest arytmetyczny. Różnica tego ciągu jest równa \(5\), a pierwszy wyraz tego ciągu jest równy \((-3)\). Wtedy iloraz \(\dfrac{a_{4}}{a_{2}}\) jest równy:

/ico/ikony_glowna/arkusze.png
Rosnący ciąg arytmetyczny \((a_{n})\) jest określony dla każdej liczby naturalnej \(n\ge1\). Suma pierwszych pięciu wyrazów tego ciągu jest równa \(10\). Wyrazy \(a_{3}, a_{5}, a_{13}\) tworzą - w podanej kolejności - ciąg geometryczny. Wyznacz wzór na \(n\)-ty wyraz ciągu arytmetycznego \((a_{n})\).

/ico/ikony_glowna/arkusze.png
Ciąg arytmetyczny \((a_{n})\) jest określony dla \(n\ge1\). Drugi i piąty wyraz tego ciągu spełniają równość \(a_{2}+20=a_{5}+50\). Różnica \(r\) ciągu \((a_{n})\) jest równa:

/ico/ikony_glowna/arkusze.png
Ciąg arytmetyczny \((a_{n})\) składa się z dwudziestu jeden wyrazów, których suma jest równa \(147\). Jeśli odrzucimy dwa początkowe i trzy końcowe wyrazy tego ciągu, to suma wszystkich pozostałych wyrazów będzie równa \(108\). Zapisz wzór ogólny ciągu \((a_{n})\).

/ico/ikony_glowna/arkusze.png
Jeśli nieskończony ciąg \((a_{n})\) jest ciągiem arytmetycznym, w którym \(a_{1}=5\) i różnica \(r=-3\), to:

/ico/ikony_glowna/arkusze.png
W ciągu arytmetycznym \((a_{n})\) określonym dla każdej liczby naturalnej \(n\ge1\), są dane dwa wyrazy: \(a_{1}=2\) i \(a_{2}=5\). Stąd wynika, że n-ty wyraz tego ciągu jest określony wzorem:

/ico/ikony_glowna/arkusze.png
Ciąg arytmetyczny \((a_{n})\) jest określony dla każdej liczby naturalnej \(n\ge1\). Czwarty wyraz tego ciągu jest równy \(a_{4}=2020\). Suma \(a_{2}+a_{6}\) jest równa:

/ico/ikony_glowna/arkusze.png
W ciągu arytmetycznym \((a_{n})\), określonym dla \(n\ge1\), czwarty wyraz jest równy \(3\), a różnica tego ciągu jest równa \(5\). Suma \(a_{1}+a_{2}+a_{3}+a_{4}\) jest równa:

/ico/ikony_glowna/arkusze.png
Dany jest ciąg arytmetyczny \((a_{n})\), określony dla \(n\ge1\), o którym wiemy, że: \(a_{1}=2\) i \(a_{2}=9\). Wtedy \(a_{n}=79\) dla:

/ico/ikony_glowna/arkusze.png
Dany jest ciąg arytmetyczny \((a_{n})\), określony dla \(n\ge1\), w którym spełniona jest równość \(a_{21}+a_{24}+a_{27}+a_{30}=100\). Oblicz sumę \(a_{25}+a_{26}\).

/ico/ikony_glowna/arkusze.png
Szósty wyraz ciągu arytmetycznego \((a_{n})\) jest równy zero. Suma jedenastu wyrazów tego ciągu ma wartość:

/ico/ikony_glowna/arkusze.png
Trzy liczby tworzą ciąg arytmetyczny o różnicy \(r=-4\). Jeśli pierwszą i drugą liczbę powiększymy o \(3\), a trzecią powiększymy o \(4\), to otrzymamy trzy kolejne wyrazy ciągu geometrycznego. Oblicz liczby tworzące ciąg arytmetyczny i ciąg geometryczny.

/ico/ikony_glowna/arkusze.png
W ciągu arytmetycznym \((a_{n})\), określonym dla \(n\ge1\), dane są wyrazy: \(a_{1}=-11\) i \(a_{9}=5\). Suma dziewięciu początkowych wyrazów tego ciągu jest równa:

/ico/ikony_glowna/arkusze.png
W ciągu arytmetycznym \((a_{1}, a_{2},...,a_{39},a_{40})\) suma wyrazów tego ciągu o numerach parzystych jest równa \(1340\), a suma wyrazów ciągu o numerach nieparzystych jest równa \(1400\). Wyznacz ostatni wyraz tego ciągu arytmetycznego.

/ico/ikony_glowna/arkusze.png
Dany jest rosnący ciąg arytmetyczny \((a_n)\), określony dla liczb naturalnych \(n\ge1\), o wyrazach dodatnich. Jeśli \(a_{2}+a_{9}=a_{4}+a_{k}\), to \(k\) jest równe:

/ico/ikony_glowna/arkusze.png
W ciągu arytmetycznym \(a_{n}\), określonym dla \(n\ge1\), dane są dwa wyrazy: \(a_{1}=7\) i \(a_{8}=-49\). Suma ośmiu początkowych wyrazów tego ciągu jest równa:

/ico/ikony_glowna/arkusze.png
Ciąg arytmetyczny jest określony dla każdej liczby naturalnej . Różnicą tego ciągu jest liczba \(r=-4\) , a średnia arytmetyczna początkowych sześciu wyrazów tego ciągu: \(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\) jest równa \(16\). a) Oblicz pierwszy wyraz tego ciągu. b) Oblicz liczbę \(k\), dla której \(a_{k}=-78\).

/ico/ikony_glowna/arkusze.png
Różnica \(r\) ciągu arytmetycznego o wzorze ogólnym \(a_{n}=5-3n\;(n\ge1)\) wynosi:

/ico/ikony_glowna/arkusze.png
W ciągu arytmetycznym \((a_{n})\) określonym dla \(n\ge1\), dane są wyrazy \(a_{2}=-2\) i \(a_{5}=7\). Oblicz sumę wyrazów tego ciągu, od wyrazu piątego do wyrazu dwudziestego.

/ico/ikony_glowna/arkusze.png
W pewnym ciągu arytmetycznym suma dwóch pierwszych wyrazów jest równa \(5\frac{1}{2}\), a suma trzech pierwszych wyrazów jest równa \(12\). Pierwszy wyraz tego ciągu jest równy:

/ico/ikony_glowna/arkusze.png
Dany jest skończony, pięciowyrazowy ciąg \((4a-5;\;a;\;b;\;b+2;\;9)\). Trzy pierwsze wyrazy tego ciągu są trzema kolejnymi wyrazami ciągu arytmetycznego, a trzy ostatnie są trzema kolejnymi wyrazami ciągu geometrycznego. Oblicz \(a\) i \(b\).

/ico/ikony_glowna/arkusze.png
Ciąg arytmetyczny \((a_{n})\), określony dla \(n\ge1\), spełnia warunek \(a_{3}+a_{4}+a_{5}=15\). Wtedy:

/ico/ikony_glowna/arkusze.png
Dziewiąty wyraz ciągu arytmetycznego \((a_{n})\), określonego dla \(n\ge1\), jest równy \(34\), a suma jego ośmiu początkowych wyrazów jest równa \(110\). Oblicz pierwszy wyraz i różnicę tego ciągu.

/ico/ikony_glowna/arkusze.png
Dany jest ciąg arytmetyczny \((a_{n})\) określony wzorem \(a_{n}=16-\frac{1}{2}\cdot n\) dla każdej liczby całkowitej \(n\ge1\). Różnica \(r\) tego ciągu jest równa:

/ico/ikony_glowna/arkusze.png
W ciągu arytmetycznym \((a_{n})\), określonym dla liczb naturalnych \(n\ge1\), wyraz szósty jest liczbą dwa razy większą od wyrazu piątego, a suma dziesięciu początkowych wyrazów tego ciągu jest równa \(S_{10}=\frac{15}{4}\). Oblicz wyraz pierwszy oraz różnicę tego ciągu.

/ico/ikony_glowna/arkusze.png
Dla ciągu arytmetycznego \((a_{n})\), określonego dla \(n\ge1\), jest spełniony warunek \(a_{4}+a_{5}+a_{6}=12\). Wtedy:

/ico/ikony_glowna/arkusze.png
Dwunasty wyraz ciągu arytmetycznego \((a_{n})\), określonego dla \(n\ge1\), jest równy \(30\), a suma jego dwunastu początkowych wyrazów jest równa \(162\). Oblicz pierwszy wyraz tego ciągu.

/ico/ikony_glowna/arkusze.png
Dane są cztery ciągi określone wzorami ogólnymi dla \(n\ge1\). Który z nich jest ciągiem arytmetycznym?

/ico/ikony_glowna/arkusze.png
Dla pewnej liczby rzeczywistej \(x\) liczby: \(1-x\), \(2-3x\), \(10+2x\) są trzema początkowymi wyrazami nieskończonego ciągu arytmetycznego \((a_{n})\), określonego dla \(n\ge1\). Wyznacz \(x\) oraz oblicz sumę dziesięciu początkowych wyrazów tego ciągu.

/ico/ikony_glowna/arkusze.png
Dany jest ciąg \((a_{n})\) o wyrazie ogólnym \(a_{n}=\frac{2n+1}{n+3}\). Liczby \(a_{3},a_{5}\) są wyrazami tego ciągu, a liczby \((a_{3},x,a_{5})\) tworzą ciąg arytmetyczny. Liczba \(x\) jest równa:

/ico/ikony_glowna/arkusze.png
Suma \(n\) początkowych wyrazów ciągu arytmetycznego wyraża się wzorem \(S_{n}=3n^2+4n\). Piąty wyraz tego ciągu jest równy:

/ico/ikony_glowna/arkusze.png
Wykaż, że jeśli liczby \((3^a,3^b,3^c)\) tworzą ciąg geometryczny, to liczby \((a,b,c)\) tworzą ciąg arytmetyczny.

/ico/ikony_glowna/arkusze.png
Dany jest ciąg arytmetyczny \((a_{n})\), określony dla \(n\ge1\), o którym wiemy, że: \(a_{1}=2\) i \(a_{2}=9\). Wtedy \(a_{n}=79\) dla:

/ico/ikony_glowna/arkusze.png
Dany jest ciąg arytmetyczny \((a_{n})\), określony dla \(n\ge1\), w którym spełniona jest równość \(a_{21}+a_{24}+a_{27}+a_{30}=100\). Oblicz sumę \(a_{25}+a_{26}\).

/ico/ikony_glowna/arkusze.png
W ciągu arytmetycznym \((a_{n})\), określonym dla \(n\ge1\), spełniony jest warunek \(2a_{3}=a_{2}+a_{1}+1\). Różnica \(r\) tego ciągu jest równa:

/ico/ikony_glowna/arkusze.png
Suma trzydziestu początkowych wyrazów ciągu arytmetycznego \((a_{n})\), określonego dla \(n\ge1\), jest równa \(30\). Ponadto \(a_{30}=30\). Oblicz różnicę tego ciągu.

/ico/ikony_glowna/arkusze.png
W ciągu arytmetycznym \((a_{n})\), określonym dla \(n\ge1\), dane są: \(a_{1}=5\), \(a_{2}=11\). Wtedy:

/ico/ikony_glowna/arkusze.png
W ciągu arytmetycznym \((a_{n})\), określonym dla \(n\ge1\), dane są: wyraz \(a_{1}=8\) i suma trzech początkowych wyrazów tego ciągu \(S_{3}=33\). Oblicz różnicę: \(a_{16}-a_{13}\).

/ico/ikony_glowna/arkusze.png
Ciąg \((a, b, c)\) jest ciągiem arytmetycznym o różnicy \(2\), a ciąg \((d, e, f)\) jest ciągiem arytmetycznym o różnicy \(4\). Różnica ciągu arytmetycznego \((a+d, b+e, c+f)\) wynosi:

/ico/ikony_glowna/arkusze.png
Drugi wyraz ciągu arytmetycznego jest równy \(1\), a dwudziesty wyraz tego ciągu jest równy \(13\). Oblicz sumę tych wszystkich wyrazów ciągu, które są mniejsze od \(33\).

/ico/ikony_glowna/arkusze.png
Dany jest ciąg arytmetyczny \((a_{n})\) określony dla \(n\ge1\) i taki, że \(a_{1}+a_{2}+a_{3}=18\). Wtedy:

/ico/ikony_glowna/arkusze.png
Ciąg \((x-3,x,y)\) jest ciągiem arytmetycznym. Ciąg \((x,y,2y)\) jest ciągiem geometrycznym o wyrazach dodatnich. Znajdź wyrazy ciągu arytmetycznego oraz wyrazy ciągu geometrycznego.

/ico/ikony_glowna/arkusze.png
Dla każdej liczby całkowitej dodatniej \(n\) suma \(n\) początkowych wyrazów ciągu arytmetycznego \((a_{n})\) jest określona wzorem \(S_{n}=2n^2+n\). Wtedy wyraz \(a_{2}\) jest równy:

/ico/ikony_glowna/arkusze.png
Ciąg arytmetyczny \((a_{n})\) określony jest wzorem \(a_{n}=2016-3n\), dla \(n\ge1\). Oblicz sumę wszystkich dodatnich wyrazów tego ciągu.

/ico/ikony_glowna/arkusze.png
Dany jest ciąg arytmetyczny \((a_{n})\) określony dla każdej liczby naturalnej \(n\ge1\), w którym \(a_{1}+a_{2}+a_{3}+a_{4}=2016\) oraz \(a_{5}+a_{6}+a_{7}+...+a_{12}=2016\). Oblicz pierwszy wyraz, różnicę oraz najmniejszy dodatni wyraz ciągu \((a_{n})\).

/ico/ikony_glowna/arkusze.png
Czternasty wyraz ciągu arytmetycznego jest równy \(8\), a różnica tego ciągu jest równa \(-\frac{3}{2}\). Siódmy wyraz tego ciągu jest równy:

/ico/ikony_glowna/arkusze.png
W skończonym ciągu arytmetycznym \((a_{n})\) pierwszy wyraz \(a_{1}\) jest równy \(7\) oraz ostatni wyraz \(a_{n}\) jest równy \(89\). Suma wszystkich wyrazów tego ciągu jest równa \(2016\). Oblicz, ile wyrazów ma ten ciąg.

/ico/ikony_glowna/arkusze.png
Dla pewnego kąta ostrego \(α\) trzywyrazowy ciąg \((2sin^2α,\;\sqrt{3}tgα,\;2cos^2α)\) jest arytmetyczny. Miara kąta \(α\) jest równa:

/ico/ikony_glowna/arkusze.png
W ciągu arytmetycznym pierwszy i drugi wyraz są odpowiednio równe: \(1,-2\). Dziewiąty wyraz tego ciągu jest równy

/ico/ikony_glowna/arkusze.png
Pierwszy wyraz ciągu arytmetycznego jest równy \(4\), a suma kwadratów wyrazu drugiego, czwartego i siódmego jest równa \(702\). Wyznacz ogólny wyraz tego ciągu.

/ico/ikony_glowna/arkusze.png
Wszystkie dwucyfrowe liczby naturalne podzielne przez \(7\) tworzą rosnący ciąg arytmetyczny. Dwunastym wyrazem tego ciągu jest liczba:

/ico/ikony_glowna/arkusze.png
Dany jest ciąg arytmetyczny \((a_{n})\) dla \(n\ge1\), w którym \(a_{10}=11\) oraz \(a_{100}=111\). Wtedy różnica \(r\) tego ciągu jest równa:

/ico/ikony_glowna/arkusze.png
Dany jest ciąg arytmetyczny \((a_{n})\) o różnicy \(r\neq0\) i pierwszym wyrazie \(a_{1}=2\). Pierwszy, drugi i czwarty wyraz tego ciągu są odpowiednio pierwszym, drugim i trzecim wyrazem ciągu geometrycznego. Oblicz iloraz tego ciągu geometrycznego.

/ico/ikony_glowna/arkusze.png
Suma pierwszego i szóstego wyrazu pewnego ciągu arytmetycznego jest równa \(13\). Wynika stąd, że suma trzeciego i czwartego wyrazu tego ciągu jest równa:

/ico/ikony_glowna/arkusze.png
Dany jest nieskończony rosnący ciąg arytmetyczny \((a_{n})\), dla \(n\ge1\) taki, że \(a_{5}=18\). Wyrazy \(a_{1}\), \(a_{3}\) oraz \(a_{13}\) tego ciągu są odpowiednio pierwszym, drugim i trzecim wyrazem pewnego ciągu geometrycznego. Wyznacz wzór na \(n\)-ty wyraz ciągu \((a_{n})\).

/ico/ikony_glowna/arkusze.png
Ciąg arytmetyczny \((a_{n})\) jest określony wzorem \(a_{n}=2n-1\) dla \(n\ge1\). Suma stu początkowych kolejnych wyrazów tego ciągu jest równa:

/ico/ikony_glowna/arkusze.png
W siedmiowyrazowym ciągu arytmetycznym środkowy wyraz jest równy \(0\). Udowodnij, że suma wyrazów tego ciągu jest równa \(0\).

/ico/ikony_glowna/arkusze.png
W nieskończonym ciągu arytmetycznym \((a_{n})\), określonym dla \(n\ge1\), suma jedenastu początkowych wyrazów tego ciągu jest równa \(187\). Średnia arytmetyczna pierwszego, trzeciego i dziewiątego wyrazu tego ciągu, jest równa \(12\). Wyrazy \(a_{1}, a_{3}, a_{k}\) ciągu \((a_{n})\), w podanej kolejności, tworzą nowy ciąg - trzywyrazowy ciąg geometryczny \((b_{n})\). Oblicz \(k\).

/ico/ikony_glowna/arkusze.png
W ciągu arytmetycznym \((a_{n})\) określonym dla \(n\ge1\) dane są \(a_{1}=-4\) i \(r=2\). Którym wyrazem tego ciągu jest liczba \(156\)?

/ico/ikony_glowna/arkusze.png
Dany jest ciąg arytmetyczny \((a_{n})\). Suma częściowa tego ciągu wyraża się wzorem \(S_{n}=5n^2-7n\). Drugi wyraz ciągu jest równy:

/ico/ikony_glowna/arkusze.png
Dany jest ciąg arytmetyczny \((a_{n})\) o wyrazach: \((-10,-6,-2,...)\). Czterdziesty wyraz tego ciągu jest równy:

/ico/ikony_glowna/arkusze.png
Ciągiem arytmetycznym jest ciąg liczb:

/ico/ikony_glowna/arkusze.png
Suma dziesięciu początkowych wyrazów ciągu arytmetycznego \((a_{n})\) jest równa \(35\). Pierwszy wyraz \(a_{1}\) tego ciągu jest równy \(3\). Wtedy:

/ico/ikony_glowna/arkusze.png
Dany jest ciąg arytmetyczny \((a_{n})\) określony dla \(n\ge1\), w którym \(a_{5}=22\) oraz \(a_{10}=47\). Oblicz pierwszy wyraz \(a_{1}\) i różnicę \(r\) tego ciągu.

/ico/ikony_glowna/arkusze.png
W ciągu arytmetycznym \((a_{n})\), określonym dla \(n\ge1\), dane są dwa wyrazy: \(a_{2}=11\) i \(a_{4}=7\). Suma czterech początkowych wyrazów tego ciągu jest równa:

/ico/ikony_glowna/arkusze.png
Liczby \(6, 2x+4, x+26\) w podanej kolejności są pierwszym, drugim i trzecim wyrazem pewnego ciągu arytmetycznego. Oblicz różnicę \(r\) tego ciągu.

/ico/ikony_glowna/arkusze.png
Liczby \(2, -1, -4\) są trzema początkowymi wyrazami ciągu arytmetycznego \((a_{n})\), określonego dla liczb naturalnych \(n\ge1\). Wzór ogólny tego ciągu ma postać:

/ico/ikony_glowna/arkusze.png
W ciągu arytmetycznym piąty wyraz jest równy \(8\), zaś siódmy wyraz tego ciągu jest równy \(14\). Dziesiąty wyraz tego ciągu jest równy:

/ico/ikony_glowna/arkusze.png
Liczby \(7,\;a,\;49\) w podanej kolejności tworzą ciąg arytmetyczny. Wtedy \(a\) jest równe:

/ico/ikony_glowna/arkusze.png
Dany jest ciąg arytmetyczny \((a_{n})\) w którym różnica \(r=-2\) oraz \(a_{20}=17\). Wówczas pierwszy wyraz tego ciągu jest równy:

/ico/ikony_glowna/arkusze.png
Ciąg \((a_{n})\) określony dla \(n\ge1\) jest arytmetyczny oraz \(a_{3}=10\) i \(a_{4}=14\). Pierwszy wyraz tego ciągu jest równy:

/ico/ikony_glowna/arkusze.png
Dane liczby: \(x=\frac{3}{\sqrt{5}-2},\ y=\frac{12}{\sqrt{5}-1}+1,\ z=3\sqrt{5}+2\) tworzą rosnący ciąg arytmetyczny w kolejności:

/ico/ikony_glowna/arkusze.png
W ciągu arytmetycznym \((a_{n})\) drugi wyraz jest równy \(7\), a szósty \(17\). Wyznacz pierwszy wyraz i różnicę tego ciągu.

/ico/ikony_glowna/arkusze.png
Pierwszy wyraz ciągu arytmetycznego jest równy \(3\), czwarty wyraz tego ciągu jest równy \(15\). Oblicz sumę sześciu początkowych wyrazów tego ciągu.

/ico/ikony_glowna/arkusze.png
Suma \(S_{n}=a_{1}+a_{2}+...+a_{n}\) początkowych \(n\) wyrazów pewnego ciągu arytmetycznego \((a_{n})\) jest określona wzorem \(S_{n}=n^2-2n\). Wyznacz wzór na \(n\)-ty wyraz tego ciągu.

/ico/ikony_glowna/arkusze.png
Miary kątów czworokąta tworzą ciąg arytmetyczny o różnicy \(20°\). Najmniejszy kąt tego czworokąta ma miarę:

/ico/ikony_glowna/arkusze.png
Ciąg \((9,x,19)\) jest arytmetyczny, a ciąg \((x,42,y,z)\) jest geometryczny. Oblicz \(x\), \(y\) oraz \(z\).

/ico/ikony_glowna/arkusze.png
Ciąg arytmetyczny \((a_{n})\) jest określony wzorem \(a_{n}=-2n+1\) dla \(n\ge1\). Różnica tego ciągu jest równa:

/ico/ikony_glowna/arkusze.png
Liczby \(x,\;4,\;x+2\) są w podanej kolejności drugim, trzecim i czwartym wyrazem ciągu arytmetycznego. Wówczas liczba \(x\) jest równa:

/ico/ikony_glowna/arkusze.png
Liczby \(2x+1\), \(6\), \(16x+2\) są w podanej kolejności pierwszym, drugim i trzecim wyrazem ciągu arytmetycznego. Oblicz \(x\).

/ico/ikony_glowna/arkusze.png
Ciąg arytmetyczny \((a_{n})\) jest określony wzorem \(a_{n}=2n-1\) dla \(n\ge1\). Różnica tego ciągu jest równa:

/ico/ikony_glowna/arkusze.png
Dany jest nieskończony rosnący ciąg arytmetyczny \((a_{n})\) o wyrazach dodatnich. Wtedy:

/ico/ikony_glowna/arkusze.png
Liczby \(x\), \(y\), \(19\) tworzą w podanej kolejności ciąg arytmetyczny, przy czym \(x+y=8\). Oblicz \(x\) i \(y\).

/ico/ikony_glowna/arkusze.png
W ciągu arytmetycznym \((a_{n})\) dane są: \(a_{2}=-1\) i \(a_{4}=3\). Wtedy wyraz \(a_{3}\) jest równy:

/ico/ikony_glowna/arkusze.png
W ciągu arytmetycznym \(a_{1}=3\) oraz \(a_{20}=7\). Wtedy suma \(S_{20}=a_{1}+a_{2}+...a_{19}+a_{20}\) jest równa:

/ico/ikony_glowna/arkusze.png
Ciąg \((1,\;x,\;y-1)\) jest arytmetyczny, natomiast ciąg \((x,\;y,\;12)\) jest geometryczny. Oblicz \(x\) oraz \(y\) i podaj ten ciąg geometryczny.

/ico/ikony_glowna/arkusze.png
W ciągu arytmetycznym \((a_{n})\) mamy: \(a_{2}=5\) i \(a_{4}=11\). Oblicz \(a_{5}\).

99 zadań
Zadania dla maturzysty © Copyright 2023-2026 All rights reserved
Ciąg arytmetyczny Validator CSS Validator HTML