Powierzchnię boczną graniastosłupa prawidłowego czworokątnego rozcięto wzdłuż krawędzi bocznej graniastosłupa i rozłożono na płaszczyźnie. Otrzymano w ten sposób prostokąt \(ABCD\), w którym bok \(BC\) odpowiada krawędzi rozcięcia (wysokości graniastosłupa). Przekątna AC tego prostokąta ma długość \(16\) i tworzy z bokiem \(BC\) kąt o mierze \(30°\) (zobacz rysunek).
Długość krawędzi podstawy tego graniastosłupa
Dany jest graniastosłup prawidłowy trójkątny \(ABCDEF\) (zobacz rysunek obok). Na którym z rysunków prawidłowo narysowano, oznaczono i podpisano kąt \(\alpha\) pomiędzy ścianą boczną \(ACFD\) i przekątną \(AE\) ściany bocznej \(ABED\) tego graniastosłupa?
Dany jest graniastosłup prosty \(ABCDEFGH\), którego podstawą jest prostokąt \(ABCD\). W tym graniastosłupie \(|BD|=15\), a ponadto \(|CD|=3+|BC|\) oraz \(|\sphericalangle CDG|=60°\) (zobacz rysunek).
Oblicz objętość i pole powierzchni bocznej tego graniastosłupa.
Podstawą graniastosłupa prostego jest romb o przekątnych długości \(7 cm\) i \(10 cm\). Wysokość tego graniastosłupa jest krótsza od dłuższej przekątnej rombu o \(2 cm\). Wtedy objętość graniastosłupa jest równa:
Krawędź podstawy graniastosłupa prawidłowego czworokątnego ma długość \(2\sqrt{2}\), a jego przekątne są prostopadłe (jak na rysunku).
Objętość tego graniastosłupa jest równa:
Przekątna graniastosłupa prawidłowego czworokątnego o długości \(d\) jest nachylona do płaszczyzny podstawy pod kątem a takim, że \(sin\alpha=\frac{\sqrt{2}}{2}\). Objętość tego graniastosłupa wyraża się wzorem:
Każda krawędź graniastosłupa prawidłowego sześciokątnego ma długość równą \(2\) (zobacz rysunek).
Pole powierzchni całkowitej tego graniastosłupa jest równe:
W graniastosłupie prawidłowym czworokątnym przekątna tworzy z podstawą kąt \(45°\), a krawędź podstawy ma długość \(\sqrt{8}\). Objętość tego graniastosłupa jest równa:
Dane są graniastosłup i ostrosłup o takich samych podstawach. Liczba wszystkich wierzchołków tego graniastosłupa jest o 9 większa od liczby wszystkich wierzchołków tego ostrosłupa. Podstawą każdej z tych brył jest:
Podstawą graniastosłupa prawidłowego jest kwadrat o boku \(2\). Przekątna graniastosłupa tworzy z jego podstawą kąt o mierze \(60°\) (zobacz rysunek).
Wysokość tego graniastosłupa jest równa:
Podstawą graniastosłupa prostego \(ABCDEF\) jest trójkąt prostokątny \(ABC\), w którym \(|\sphericalangle ACB|=90°\) (zobacz rysunek). Stosunek długości przyprostokątnej \(AC\) tego trójkąta do długości przyprostokątnej \(BC\) jest równy \(4:3\). Punkt \(S\) jest środkiem okręgu opisanego na trójkącie \(ABC\), a długość odcinka \(SC\) jest równa \(5\). Pole ściany bocznej \(BEFC\) graniastosłupa jest równe \(48\). Oblicz
W graniastosłupie prawidłowym czworokątnym o podstawach \(ABCD\) i \(A_{1}B_{1}C_{1}D_{1}\) (jak na rysunku) krawędź boczna jest trzy razy dłuższa od krawędzi podstawy. Z wierzchołka \(B\) poprowadzono odcinek \(BE\), którego koniec \(E\) jest środkiem krawędzi \(A_{1}D_{1}\). Długość \(BE\) jest równa \(4\sqrt{41}\). Oblicz objętość graniastosłupa i wyznacz sinus kąta nachylenia odcinka \(BE\) do płaszczyzny podstawy graniastosłupa.
Na rysunku przedstawiono graniastosłup prawidłowy czworokątny o krawędzi podstawy równej \(4\). Graniastosłup ten przecięto płaszczyzną przechodzącą przez przekątną \(BD\) podstawy i wierzchołek \(C'\). Otrzymany przekrój jest trójkątem, którego wysokość poprowadzona z wierzchołka \(C'\) jest równa \(12\). Wysokość graniastosłupa jest równa:
Gdy dodamy liczbę wszystkich krawędzi pewnego graniastosłupa do liczby wszystkich jego wierzchołków, to otrzymamy w wyniku \(15\). Liczba wszystkich krawędzi tego graniastosłupa jest równa:
Podstawą graniastosłupa prostego jest prostokąt o bokach długości \(3\) i \(4\). Kąt \(α\), jaki przekątna tego graniastosłupa tworzy z jego podstawą, jest równy \(45°\) (zobacz rysunek).
Wysokość graniastosłupa jest równa:
Dany jest graniastosłup prawidłowy trójkątny (zobacz rysunek). Pole powierzchni całkowitej tego graniastosłupa jest równe \(45\sqrt{3}\). Pole podstawy graniastosłupa jest równe polu jednej ściany bocznej. Oblicz objętość tego graniastosłupa.
Krawędź podstawy graniastosłupa prawidłowego czworokątnego jest równa \(1\). Graniastosłup przecięto płaszczyzną przechodzącą przez krawędź podstawy i tworzącą z tą podstawą kąt \(60°\) (zobacz rysunek). Oblicz pole otrzymanego przekroju.
Dany jest graniastosłup prawidłowy trójkątny o dolnej podstawie \(ABC\) i górnej \(A'B'C'\). Przekątna ściany bocznej tworzy z krawędzią podstawy kąt \(60°\). Pole ściany bocznej graniastosłupa jest równe \(2\sqrt{3}\). Oblicz pole trójkąta \(ABC'\).
Podstawą graniastosłupa prostego \(ABCDEF\) jest trójkąt prostokątny \(ABC\), w którym \(|\sphericalangle ACB|=90°\) (zobacz rysunek). Stosunek długości przyprostokątnej \(AC\) tego trójkąta do długości przyprostokątnej \(BC\) jest równy \(4:3\). Punkt \(S\) jest środkiem okręgu opisanego na trójkącie \(ABC\), a długość odcinka \(SC\) jest równa \(5\). Pole ściany bocznej \(BEFC\) graniastosłupa jest równe \(48\). Oblicz
Podstawą graniastosłupa prostego \(ABCDA'B'C'D'\) jest romb \(ABCD\). Przekątna \(AC'\) tego graniastosłupa ma długość \(8\) i jest nachylona do płaszczyzny podstawy pod kątem \(30°\), a przekątna \(BD'\) jest nachylona do tej płaszczyzny pod kątem \(45°\). Oblicz pole powierzchni całkowitej tego graniastosłupa.
Pole powierzchni całkowitej graniastosłupa prawidłowego czworokątnego, w którym wysokość jest \(3\) razy dłuższa od krawędzi podstawy, jest równe \(140\). Zatem krawędź podstawy tego graniastosłupa jest równa:
Podstawą graniastosłupa prawidłowego czworokątnego jest kwadrat o boku długości \(2\), a przekątna ściany bocznej ma długość \(3\) (zobacz rysunek). Kąt, jaki tworzą przekątne ścian bocznych tego graniastosłupa wychodzące z jednego wierzchołka, ma miarę \(α\).
Wtedy wartość \(sin\frac{α}{2}\) jest równa:
Przekątna podstawy graniastosłupa prawidłowego czworokątnego jest dwa razy dłuższa od wysokości graniastosłupa. Graniastosłup przecięto płaszczyzną przechodzącą przez przekątną podstawy i jeden wierzchołek drugiej podstawy (patrz rysunek).
Płaszczyzna przekroju tworzy z podstawą graniastosłupa kąt \(α\) o mierze:
W graniastosłupie prawidłowym czworokątnym (zobacz rysunek poniżej) punkt \(O\) jest punktem przecięcia przekątnych podstawy dolnej, a odcinek \(OC'\) jest o \(4\) dłuższy od przekątnej podstawy. Graniastosłup ten przecięto płaszczyzną przechodzącą przez przekątną \(BD\) podstawy dolnej i wierzchołek \(C'\) podstawy górnej. Pole figury otrzymanej w wyniku przekroju jest równe \(48\). Zaznacz tę figurę na rysunku poniżej i oblicz
Pole podstawy graniastosłupa prawidłowego czworokątnego jest równe \(36\), a miara kąta nachylenia przekątnej graniastosłupa do płaszczyzny jego podstawy jest równa \(30°\). Wysokość tego graniastosłupa jest równa:
W graniastosłupie prawidłowym czworokątnym \(EFGHIJKL\) wierzchołki \(E,G,L\) połączono odcinkami (tak jak na rysunku).
Wskaż kąt między wysokością \(OL\) trójkąta \(EGL\) i płaszczyzną podstawy tego graniastosłupa.
Wysokość graniastosłupa prawidłowego czworokątnego jest równa \(16\). Przekątna graniastosłupa jest nachylona do płaszczyzny jego podstawy pod kątem, którego cosinus jest równy \(\frac{3}{5}\). Oblicz pole powierzchni całkowitej tego graniastosłupa.
Wysokość graniastosłupa prawidłowego czworokątnego jest równa \(16\). Przekątna graniastosłupa jest nachylona do płaszczyzny jego podstawy pod kątem, którego cosinus jest równy \(\frac{3}{5}\). Oblicz pole powierzchni całkowitej tego graniastosłupa.
W graniastosłupie prawidłowym czworokątnym, którego krawędź podstawy ma długość \(a\), pole powierzchni bocznej jest \(8\) razy większe od pola podstawy. Objętość tego graniastosłupa wynosi:
Ostrosłup i graniastosłup mają równe pola podstaw i równe wysokości. Objętość ostrosłupa jest równa \(81\sqrt{3}\). Objętość graniastosłupa jest równa:
W graniastosłupie prawidłowym czworokątnym wysokość graniastosłupa jest o \(4\) krótsza od przekątnej podstawy i o \(8\) krótsza od przekątnej graniastosłupa. Oblicz sinus kąta pomiędzy przekątną graniastosłupa a płaszczyzną podstawy.
Podstawą graniastosłupa \(ABCDEFGH\) jest prostokąt \(ABCD\) (zobacz rysunek), którego krótszy bok ma długość \(3\). Przekątna prostokąta \(ABCD\) tworzy z jego dłuższym bokiem kąt \(30°\). Przekątna \(HB\) graniastosłupa tworzy z płaszczyzną jego podstawy kąt \(60°\). Oblicz objętość tego graniastosłupa.
Liczba wszystkich krawędzi graniastosłupa jest o \(10\) większa od liczby wszystkich jego ścian bocznych. Stąd wynika, że podstawą tego graniastosłupa jest:
Dany jest graniastosłup prawidłowy trójkątny \(ABCDEF\) o podstawach \(ABC\) i \(DEF\) i krawędziach bocznych \(AD\), \(BE\) i \(CF\) (zobacz rysunek). Długość krawędzi podstawy \(AB\) jest równa \(8\), a pole trójkąta \(ABF\) jest równe \(52\). Oblicz objętość tego graniastosłupa.
W graniastosłupie prawidłowym czworokątnym \(ABCDEFGH\) przekątna \(AC\) podstawy ma długość \(4\). Kąt \(ACE\) jest równy \(60°\). Oblicz objętość ostrosłupa \(ABCDE\) przedstawionego na poniższym rysunku.
W graniastosłupie prawidłowym trójkątnym wszystkie krawędzie są tej samej długości. Suma długości wszystkich krawędzi jest równa \(90\). Wtedy pole powierzchni całkowitej tego graniastosłupa jest równe:
Dany jest graniastosłup prawidłowy trójkątny \(ABCDEF\) o podstawach \(ABC\) i \(DEF\) i krawędziach bocznych \(AD\), \(BE\) i \(CF\). Oblicz pole trójkąta \(ABF\) wiedząc, że \(|AB|=10\) i \(|CF|=11\). Narysuj ten graniastosłup i zaznacz na nim trójkąt \(ABF\).
Jacek bawi się sześciennymi klockami o krawędzi \(2cm\). Zbudował z nich jeden duży sześcian o krawędzi \(8cm\) i wykorzystał do tego wszystkie swoje klocki. Następnie zburzył budowlę i ułożył z tych klocków drugą bryłę – graniastosłup prawidłowy czworokątny. Wtedy okazało się, że został mu dokładnie jeden klocek, którego nie było gdzie dołożyć. Oblicz stosunek pola powierzchni całkowitej pierwszej ułożonej bryły
Na rysunku przedstawiono siatkę graniastosłupa prawidłowego czworokątnego oraz zapisano niektóre wymiary tej siatki.
Oblicz objętość tego graniastosłupa. Zapisz obliczenia.
Na rysunku przedstawiono siatkę graniastosłupa prostego oraz podano długości niektórych jego krawędzi.
Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe. Pole największej ściany bocznej tego graniastosłupa jest równe \(35\).Pole podstawy tego graniastosłupa jest równe \(12\).
Pole największej ściany bocznej tego graniastosłupa
Na rysunkach przedstawiono ostrosłup prawidłowy i graniastosłup prawidłowy. Wszystkie krawędzie obu brył są jednakowej długości.
Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe. Suma długości wszystkich krawędzi ostrosłupa jest większa niż suma długości wszystkich krawędzi graniastosłupa.Całkowite pole powierzchni ostrosłupa jest większe niż całkowite
Na rysunku przedstawiono trzy graniastosłupy: dwa o podstawie prostokąta i jeden o podstawie trapezu. Bryły te mają równe pola podstaw oraz jednakową objętość.
Uporządkuj pola powierzchni bocznej \(P_{I}, P_{II}\) i \(P_{III}\) tych brył od najmniejszego do największego.
Oceń prawdziwość podanych zdań. Każdy graniastosłup prosty, który ma sześć ścian, jest prostopadłościanem.Ostrosłup, który ma sześć krawędzi, jest czworościanem.
Każdy graniastosłup prosty, który ma sześć ścian, jest prostopadłościanem.
Na rysunku I przedstawiono graniastosłup prawidłowy, którego wszystkie krawędzie są przystające, a suma ich długości wynosi \(90cm\). Na II rysunku przedstawiono graniastosłup, który ma w podstawie trójkąt prostokątny o przyprostokątnych długości \(6cm\) i \(8cm\). Obie bryły mają taką samą wysokość.
Oba te graniastosłupy połączono w taki sposób, że otrzymano jeden graniastosłup czworokątny. Oblicz pole powierzchni
Wojtek narysował cztery figury składające się z kwadratów i trójkątów równobocznych (tak, jak pokazano na rysunku poniżej). Aby otrzymać z nich siatki graniastosłupa, zamierza dorysować do każdej figury jeden kwadrat albo jeden trójkąt.
Z której figury nie da się w ten sposób otrzymać siatki graniastosłupa?
Na rysunku przedstawiono fragment siatki graniastosłupa prawidłowego trójkątnego.
Pole narysowanego trójkąta jest równe \(16\sqrt{3}cm^2\), a pole prostokąta jest równe \(24\sqrt{3}cm^2\). Oblicz objętość tego graniastosłupa.
Maja zrobiła dwa pudełka w kształcie graniastosłupów prawidłowych czworokątnych o różnych objętościach. Powierzchnię boczną każdego z tych graniastosłupów wykonała z takich samych prostokątów o wymiarach \(28cm\) i \(12cm\) (patrz rysunek). Oblicz różnicę objętości tych graniastosłupów. Zapisz obliczenia.
Na rysunku przedstawiono graniastosłup prosty o podstawie trójkąta prostokątnego i jego siatkę. Dwie dłuższe krawędzie podstawy graniastosłupa mają \(12cm\) i \(13cm\) długości, a pole zacieniowanej części siatki graniastosłupa jest równe \(168cm^2\). Oblicz objętość tego graniastosłupa.
Przekrój poprzeczny ziemnego wału przeciwpowodziowego ma mieć kształt równoramiennego trapezu o podstawach długości \(6m\) i \(16m\) oraz wysokości \(12m\). Trzeba jednak usypać wyższy wał, bo przez dwa lata ziemia osiądzie i wysokość wału zmniejszy się o \(20\%\) (szerokość wału u podnóża i na szczycie nie zmienia się).
Oblicz, ile metrów sześciennych ziemi trzeba przywieźć na usypanie \(100\)-metrowego odcinka ziemnego
Przekrój poprzeczny ziemnego wału przeciwpowodziowego ma mieć kształt równoramiennego trapezu o podstawach długości \(6m\) i \(16m\) oraz wysokości \(12m\). Trzeba jednak usypać wyższy wał, bo przez dwa lata ziemia osiądzie i wysokość wału zmniejszy się o \(20\%\) (szerokość wału u podnóża i na szczycie nie zmienia się).
Po zakończeniu osiadania ziemi, w celu zmniejszenia przesiąkania, na zboczu wału od strony wody zostanie
Dany jest wzór na pole powierzchni całkowitej graniastosłupa:
$$P_{c}=2P_{p}+P_{b}$$
gdzie:
\(P_{c}\) - pole powierzchni całkowitej,
\(P_{p}\) - pole podstawy,
\(P_{b}\) - pole powierzchni bocznej.
Pole podstawy \(P_{p}\) wyznaczone poprawnie z powyższego wzoru opisano równaniem:
Na rysunku przedstawiono graniastosłup prosty, którego podstawą jest trójkąt prostokątny. Długość jednej z przyprostokątnych jest równa \(8 cm\), a długość przeciwprostokątnej jest równa \(10 cm\). Najmniejsza ściana boczna tego graniastosłupa ma pole równe \(54 cm^2\).
Oblicz sumę długości wszystkich krawędzi tego graniastosłupa. Zapisz obliczenia.