Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
Matura poprawkowa z matematyki (poziom podstawowy) - Sierpień 2017 Zadanie 34 z 1160
Zadanie nr 34. (5pkt)
Podstawą graniastosłupa prostego \(ABCDEF\) jest trójkąt prostokątny \(ABC\), w którym \(|\sphericalangle ACB|=90°\) (zobacz rysunek). Stosunek długości przyprostokątnej \(AC\) tego trójkąta do długości przyprostokątnej \(BC\) jest równy \(4:3\). Punkt \(S\) jest środkiem okręgu opisanego na trójkącie \(ABC\), a długość odcinka \(SC\) jest równa \(5\). Pole ściany bocznej \(BEFC\) graniastosłupa jest równe \(48\). Oblicz objętość tego graniastosłupa.
Rozwiązanie:
Krok 1. Obliczenie długości boku \(AB\).
Skoro trójkąt \(ABC\) jest prostokątny i na nim jest opisany okrąg, to znaczy że przeciwprostokątna tego trójkąta (czyli właśnie bok \(AB\)) jest równy średnicy tego okręgu. Wynika to z własności okręgów opisanych na trójkątach prostokątnych. Z treści zadania wiemy, że promień okręgu jest równy \(r=5\) (bo odcinek \(SC\) jest promieniem), zatem średnica okręgu, czyli odcinek \(AB\) będzie równy:
$$|AB|=2\cdot5 \ ,\
|AB|=10$$
Krok 2. Obliczenie długości boków \(AC\) oraz \(BC\).
Skoro stosunek boków \(AC\) do \(BC\) jest równy \(4:3\), to możemy zapisać, że \(|AC|=4x\), natomiast \(|BC|=3x\). Wartość niewiadomej \(x\) obliczymy teraz z Twierdzenia Pitagorasa w trójkącie \(ABC\):
$$|AC|^2+|BC|^2=|AB|^2 \ ,\
(4x)^2+(3x)^2=10^2 \ ,\
16x^2+9x^2=100 \ ,\
25x^2=100 \ ,\
x^2=4 \ ,\
x=2 \quad\lor\quad x=-2$$
Ujemną długość oczywiście odrzucamy, bo bok nie może mieć ujemnej wartości, zatem zostaje nam \(x=2\). Zgodnie z naszymi oznaczeniami zapisaliśmy długości boków \(AC\) oraz \(BC\) jako \(4x\) oraz \(3x\), czyli:
$$|AC|=4x \ ,\
|AC|=4\cdot2 \ ,\
|AC|=8 \ ,\
\quad \ ,\
|BC|=3x \ ,\
|BC|=3\cdot2 \ ,\
|BC|=6$$
Krok 3. Obliczenie wysokości graniastosłupa.
Spójrzmy na prostokąt \(BEFC\). Wiemy, że jego pole jest równe \(48\) i wiemy też, że dolny bok tego prostokąta (czyli bok \(BC\)) ma długość \(6\). To oznacza, że wysokość tego prostokąta (czyli wysokość całego graniastosłupa) jest równa:
$$P=|BC|\cdot|BE| \ ,\
48=6\cdot|BE| \ ,\
|BE|=8$$
Krok 4. Obliczenie objętości graniastosłupa.
W podstawie graniastosłupa mamy trójkąt o przyprostokątnych \(6\) oraz \(8\), czyli bez przeszkód obliczymy pole podstawy. Dodatkowo wiemy już, że wysokość graniastosłupa jest równa \(8\), zatem możemy przejść do obliczenia objętości tej bryły:
$$V=P_{p}\cdot H \ ,\
V=\frac{1}{2}\cdot8\cdot6\cdot8 \ ,\
V=192$$
Teoria:
W trakcie opracowania
matura poprawkowa - CKE