Funkcja kwadratowa \(f\) jest określona wzorem \(f(x)=-(x-1)^2+2\).
Zadanie 1. Wykresem funkcji \(f\) jest parabola, której wierzchołek ma współrzędne:
A. \((1, 2)\)
B. \((-1, 2)\)
C. \((1, -2)\)
D. \((-1, -2)\)
Zadanie 2. Zbiorem wartości funkcji \(f\) jest przedział:
A. \((-\infty,2\rangle\)
B. \((-\infty,2)\)
C. \((2;+\infty)\)
D. \(\langle2;+\infty)\)
Dana jest funkcja kwadratowa \(f\), której fragment wykresu przedstawiono w kartezjańskim układzie współrzędnych \((x,y)\) na rysunku obok. Wierzchołek paraboli, która jest wykresem funkcji \(f\), oraz punkty przecięcia paraboli z osiami układu współrzędnych mają współrzędne całkowite.
Zadanie 1.
Funkcja \(g\) jest określona za pomocą funkcji \(f\) następująco: \(g(x)=f(x-2)\). Wykres funkcji \(g\) przedstawiono na rysunku:
A.
Funkcja kwadratowa \(f\) jest określona wzorem \(f(x)=3x^2+bx-5\) dla każdej liczby rzeczywistej \(x\). Współczynnik \(b\) jest liczbą rzeczywistą mniejszą od zera.
Dokończ zdanie. Zaznacz odpowiedź A, B albo C oraz jej uzasadnienie 1., 2. albo 3.
Funkcja \(f\):
A. ma dwa rzeczywiste miejsca zerowe,
B. ma jedno rzeczywiste miejsce zerowe,
C. nie ma rzeczywistych miejsc zerowych,
ponieważ
1. \(b^2+60\gt0\)
2. \(b^2+60=0\)
3.
Wzór funkcji kwadratowej można zapisać w postaci ogólnej, kanonicznej lub iloczynowej (o ile istnieje).
Zadanie 1.
Dana jest funkcja kwadratowa \(y=f(x)\), której fragment wykresu przedstawiono w kartezjańskim układzie współrzędnych \((x,y)\) na rysunku poniżej.
Dokończ zdanie. Zaznacz właściwą odpowiedź spośród podanych, jeżeli wiadomo, że jeden ze wzorów podanych w odpowiedziach A-D to wzór funkcji \(f\).
Funkcja
Na rysunku przedstawiono fragment wykresu funkcji kwadratowej \(f\) określonej wzorem \(f(x)=2x^2+5x\).
Osią symetrii wykresu funkcji \(f\) jest prosta o równaniu:
Na rysunku przedstawiono fragment wykresu funkcji kwadratowej \(f\) określonej wzorem \(f(x)=2x^2+5x\).
Funkcja kwadratowa \(g\) jest określona wzorem \(g(x)=2x^2-5x\). Wykres funkcji \(g\) jest:
Wykres funkcji kwadratowej \(f\) określonej wzorem \(f(x)=ax^2+bx+c\) ma z prostą o równaniu \(y=6\) dokładnie jeden punkt wspólny. Punkty \(A=(-5,0)\) i \(B=(3,0)\) należą do wykresu funkcji \(f\). Oblicz wartości współczynników \(a\), \(b\) oraz \(c\).
Jeśli jedynym miejscem zerowym funkcji kwadratowej \(f(x)=a(x-p)^2+q\) jest liczba \(4\), to wierzchołek paraboli będącej wykresem funkcji \(f\) ma współrzędne:
Funkcja kwadratowa \(f(x)=ax^2+bx+c\) ma dwa miejsca zerowe \(x_{1}=-2\frac{1}{2}\) i \(x_{2}=1\). Wykres funkcji \(f\) przechodzi przez punkt \(A(-3,8)\). Wyznacz najmniejszą wartość funkcji \(f\).
Funkcja kwadratowa \(f\) jest określona wzorem \(f(x)=-2(x+3)(x-5)\). Wierzchołek paraboli, która jest wykresem funkcji \(f\), ma współrzędną \(x\) równą:
Na rysunku przedstawiono fragment wykresu funkcji kwadratowej \(f\).
Jeden spośród podanych poniżej wzorów jest wzorem tej funkcji. Wskaż wzór funkcji \(f\).
Na rysunku przedstawiono fragment wykresu funkcji kwadratowej \(f\). Jednym z miejsc zerowych tej funkcji jest liczba \(2\). Do wykresu funkcji \(f\) należy punkt \((0,3)\). Prosta o równaniu \(x=-2\) jest osią symetrii paraboli, będącej wykresem funkcji \(f\).
Drugim miejscem zerowym funkcji \(f\) jest liczba:
Na rysunku przedstawiono fragment wykresu funkcji kwadratowej \(f\). Jednym z miejsc zerowych tej funkcji jest liczba \(2\). Do wykresu funkcji \(f\) należy punkt \((0,3)\). Prosta o równaniu \(x=-2\) jest osią symetrii paraboli, będącej wykresem funkcji \(f\).
Wartość funkcji \(f\) dla argumentu \((-4)\) jest równa:
Wykresem funkcji kwadratowej \(f\) określonej wzorem \(f(x)=2x^2+bx+c\) jest parabola o wierzchołku w punkcie \(W=(1;-8)\). Oblicz wartości współczynników \(b\) i \(c\) we wzorze funkcji \(f\).
Funkcja kwadratowa \(f\) jest określona wzorem \(f(x)=a(x-1)(x-3)\). Na rysunku przedstawiono fragment paraboli będącej wykresem tej funkcji. Wierzchołkiem tej paraboli jest punkt \(W=(2;1)\).
Współczynnik \(a\) we wzorze funkcji \(f\) jest równy:
Funkcja kwadratowa \(f\) jest określona wzorem \(f(x)=a(x-1)(x-3)\). Na rysunku przedstawiono fragment paraboli będącej wykresem tej funkcji. Wierzchołkiem tej paraboli jest punkt \(W=(2;1)\).
Największa wartość funkcji \(f\) w przedziale \(\langle1,4\rangle\) jest równa:
Funkcja kwadratowa \(f\) jest określona wzorem \(f(x)=a(x-1)(x-3)\). Na rysunku przedstawiono fragment paraboli będącej wykresem tej funkcji. Wierzchołkiem tej paraboli jest punkt \(W=(2;1)\).
Osią symetrii paraboli będącej wykresem funkcji \(f\) jest prosta o równaniu:
Na rysunku przedstawiono fragment wykresu funkcji kwadratowej \(f\) określonej wzorem \(f(x)=x^2+bx+c\).
Współczynniki \(b\) i \(c\) spełniają warunki:
Funkcja kwadratowa \(f(x)=ax^2+bx+c\) ma dwa miejsca zerowe \(x_{1}=-2\) i \(x_{2}=6\). Wykres funkcji \(f\) przechodzi przez punkt \(A=(1,-5)\). Oblicz najmniejszą wartość funkcji \(f\).
Prosta o równaniu \(x=-2\) jest osią symetrii wykresu funkcji kwadratowej \(f\) określonej wzorem \(f(x)=ax^2-8x+c\). Punkt \(P=(2,2)\) należy do wykresu tej funkcji. Wyznacz współczynniki \(a\) i \(c\).
Na rysunku przedstawiono fragment paraboli będącej wykresem funkcji kwadratowej \(g\). Wierzchołkiem tej paraboli jest punkt \(W=(1;1)\).
Zbiorem wartości funkcji \(g\) jest przedział:
Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej \(f\). Wierzchołkiem tej paraboli jest punkt \(W=(2,-4)\). Liczby \(0\) i \(4\) to miejsca zerowe funkcji \(f\).
Zbiorem wartości funkcji \(f\) jest przedział:
Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej \(f\). Wierzchołkiem tej paraboli jest punkt \(W=(2,-4)\). Liczby \(0\) i \(4\) to miejsca zerowe funkcji \(f\).
Największa wartość funkcji \(f\) w przedziale \(\langle1, 4\rangle\) jest równa:
Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej \(f\). Wierzchołkiem tej paraboli jest punkt \(W=(2,-4)\). Liczby \(0\) i \(4\) to miejsca zerowe funkcji \(f\).
Osią symetrii wykresu funkcji \(f\) jest prosta o równaniu:
Osią symetrii wykresu pewnej funkcji kwadratowej jest prosta o równaniu \(x=-3\), a wartość największa tej funkcji jest równa \(4\). Który ze wzorów może opisywać tę funkcję kwadratową?
Wyznacz wzór funkcji kwadratowej w postaci ogólnej, jeżeli wierzchołek paraboli, która jest jej wykresem, znajduje się w punkcie \(W=(-1,5)\), a ta funkcja w przedziale \(\langle-2,2\rangle\) osiąga najmniejszą wartość równą \(-4\).
Wykresem funkcji kwadratowej \(f\) określonej wzorem \(f(x)=x^2+bx+c\) jest parabola, na której leży punkt \(A=(0,-5)\). Osią symetrii tej paraboli jest prosta o równaniu \(x=7\). Oblicz wartości współczynników \(b\) i \(c\).
Osią symetrii paraboli będącej wykresem funkcji kwadratowej \(f(x)=ax^2+bx+3\), gdzie \(a\neq0\), jest prosta o równaniu \(x=-2\). Wierzchołek paraboli leży na prostej o równaniu \(y=-x+2\). Wyznacz wzór funkcji \(f\) w postaci ogólnej lub kanonicznej.
Na rysunku przedstawiono fragment wykresu funkcji kwadratowej \(f\) określonej wzorem \(f(x)=x^2+bx+c\).
Współczynniki \(b\) i \(c\) spełniają warunki:
Funkcja kwadratowa \(f(x)=ax^2+bx+c\) ma dwa miejsca zerowe \(x_{1}=-2\) i \(x_{2}=6\). Wykres funkcji \(f\) przechodzi przez punkt \(A=(1,-5)\). Oblicz najmniejszą wartość funkcji \(f\).
Na rysunku przedstawiono fragment wykresu funkcji kwadratowej \(f(x)=ax^2+bx+c\), o miejscach zerowych: \(-3\) i \(1\).
Współczynnik \(c\) we wzorze funkcji \(f\) jest równy:
Funkcja kwadratowa \(f\) jest określona dla wszystkich liczb rzeczywistych \(x\) wzorem \(f(x)=ax^2+bx+c\). Największa wartość funkcji \(f\) jest równa \(6\) oraz \(f(-6)=f(0)=\frac{3}{2}\). Oblicz wartość współczynnika \(a\).
Funkcja kwadratowa ma dwa miejsca zerowe. Jednym z nich jest liczba \(-3\). Wierzchołek paraboli, będącej wykresem tej funkcji, znajduje się w punkcie \((-1,-8)\). Wyznacz wzór tej funkcji.
Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej \(f\). Wierzchołkiem tej paraboli jest punkt \(W=(1,9)\). Liczby \(-2\) i \(4\) to miejsca zerowe funkcji \(f\).
Zbiorem wartości funkcji \(f\) jest przedział:
Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej \(f\). Wierzchołkiem tej paraboli jest punkt \(W=(1,9)\). Liczby \(-2\) i \(4\) to miejsca zerowe funkcji \(f\).
Najmniejsza wartość funkcji \(f\) w przedziale \(\langle-1,2\rangle\) jest równa:
Wykres funkcji kwadratowej \(f(x)=-(x+1)^2+5\) przekształcono symetrycznie względem osi \(Oy\) i otrzymano wykres funkcji \(g\). Wskaż równanie prostej, która jest osią symetrii wykresu funkcji \(g\).
Wyznacz zbiór wszystkich argumentów \(x\), dla których funkcja kwadratowa \(f(x)=\frac{1}{2}x^2+2x+2\) przyjmuje większe wartości niż funkcja liniowa \(g(x)=-x+2\).
Wierzchołek paraboli będącej wykresem funkcji kwadratowej \(y=f(x)\) ma współrzędne \((2,2)\). Wówczas wierzchołek paraboli będącej wykresem funkcji \(g(x)=f(x+2)\) ma współrzędne:
Funkcja kwadratowa \(f\) określona jest wzorem \(f(x)=ax^2+bx+c\). Zbiorem rozwiązań nierówności \(f(x)\gt0\) jest przedział \((0,12)\). Największa wartość funkcji \(f\) jest równa \(9\). Oblicz współczynniki \(a\), \(b\) i \(c\) funkcji \(f\).
Wierzchołek paraboli będącej wykresem funkcji kwadratowej \(y=f(x)\) ma współrzędne \((2,2)\). Wówczas wierzchołek paraboli będącej wykresem funkcji \(g(x)=f(x+2)\) ma współrzędne:
Funkcja kwadratowa \(f\), dla \(x=-3\) przyjmuje wartość największą równą \(4\). Do wykresu funkcji \(f\) należy punkt \(A=(-1,3)\). Zapisz wzór funkcji kwadratowej \(f\).
Funkcja kwadratowa, \(f\) dla \(x=-3\) przyjmuje wartość największą równą \(4\). Do wykresu funkcji \(f\) należy punkt \(A=(-1,3)\). Zapisz wzór funkcji kwadratowej \(f\).
Wykres funkcji kwadratowej \(f(x)=\frac{1}{2}x^2\) przesunięto o cztery jednostki w prawo i otrzymano wykres funkcji \(g(x)\). Wyznacz zbiór wszystkich argumentów \(x\), dla których funkcja \(g(x)\) przyjmuje wartości większe od \(2\).
W układzie współrzędnych narysowano część paraboli o wierzchołku w punkcie \(A=(2,4)\), która jest wykresem funkcji kwadratowej \(f\).
Funkcja \(f\) może być opisana wzorem:
Wykresem funkcji kwadratowej \(f(x)=2x^2+bx+c\) jest parabola, której wierzchołkiem jest punkt \(W=(4,0)\). Oblicz wartości współczynników \(b\) i \(c\).