{tytul} Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
MATEMA tix .pl
Matematyczne wyzwania
Arkusz 2018
Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów

Arkusz 2018

Matura z matematyki (poziom podstawowy) - Czerwiec 2018 Zadanie 27 z 1015
Zadanie nr 27. (2pkt)
Wykresem funkcji kwadratowej \(f\) określonej wzorem \(f(x)=x^2+bx+c\) jest parabola, na której leży punkt \(A=(0,-5)\). Osią symetrii tej paraboli jest prosta o równaniu \(x=7\). Oblicz wartości współczynników \(b\) i \(c\).
Odpowiedź:      

\(b=-14\), \(c=-5\)

Rozwiązanie:      
Krok 1. Sporządzenie rysunku pomocniczego. Spróbujmy narysować parabolę, której osią symetrii jest prosta o równaniu \(x=7\): Z rysunku wynika, że skoro osią symetrii jest prosta \(x=7\), to musi ona przechodzić przez wierzchołek. To z kolei prowadzi nas do wniosku, że współrzędną iksową wierzchołka paraboli jest \(p=7\). Krok 2. Obliczenie wartości współczynnika \(b\). Współrzędną iksową wierzchołka obliczamy ze wzoru \(p=\frac{-b}{2a}\). Wartość współczynnika \(a\) jest znana i wynosi \(a=1\) (bo przed \(x^2\) nie ma żadnej liczby). W związku z tym jesteśmy w stanie obliczyć wartość współczynnika \(b\): $$p=\frac{-b}{2a} \           ,\ 7=\frac{-b}{2\cdot1} \           ,\ 7=\frac{-b}{2} \           ,\ 14=-b \           ,\ b=-14$$ Krok 3. Obliczenie wartości współczynnika \(c\). Współczynnik \(c\) w postaci ogólnej mówi nam o tym w którym miejscu parabola przecina oś igreków. Przykładowo jak parabola przecina oś igreków w wartości \(y=4\), to współczynnik \(c=4\). Tak się składa, że punkt \(A\) jest właśnie miejscem przecięcia się paraboli z osią igreków (bo ma współrzędną iksową równą \(0\)). W związku z tym możemy zapisać, że \(c=-5\). Jeżeli o tej własności nie pamiętamy, to do wzoru funkcji \(f(x)=x^2-14x+c\) wystarczy podstawić współrzędne punktu \(A\), czyli \(x=0\) oraz \(y=-5\). Otrzymamy wtedy: $$f(x)=x^2-14x+c \           ,\ -5=0^2-14\cdot0+c \           ,\ -5=0+0+c \           ,\ c=-5$$
Teoria:      
W trakcie opracowania
matura dodatkowa - CKE
Matematyczne wyzwania © Copyright 2023-2026 All rights reserved
Arkusz 2018 Validator CSS Validator HTML