Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
Matura poprawkowa z matematyki (poziom podstawowy) - Sierpień 2016 Zadanie 29 z 1328
Zadanie nr 29. (2pkt)
Funkcja kwadratowa jest określona wzorem \(f(x)=x^2-11x\). Oblicz najmniejszą wartość funkcji \(f\) w przedziale \(\langle-6,6\rangle\).
Odpowiedź:
Analizowana funkcja przyjmuje najmniejszą wartość w miejscu który jest jej wierzchołkiem i jest ona równa \(-30\frac{1}{4}\).
Rozwiązanie:
Funkcja kwadratowa będzie mieć najmniejszą (oraz największą) wartość albo w jednym z punktów krańcowych przedziału albo w swoim wierzchołku. Musimy więc obliczyć współrzędne wierzchołka (a w zasadzie współrzędną \(x_{W}\), bo tylko ona jest nam potrzebna).
Krok 1. Obliczenie współrzędnej \(x_{W}\) wierzchołka paraboli.
Skorzystamy ze wzoru na współrzędną \(x\) wierzchołka paraboli, czyli \(x_{W}=\frac{-b}{2a}\). Ze wzoru funkcji odczytujemy współczynniki \(a=1\) oraz \(b=-11\) i podstawiamy je do wzoru otrzymując:
$$x_{W}=\frac{-(-11)}{2\cdot1} \ ,\
x_{W}=\frac{11}{2}$$
Krok 2. Obliczenie wartości funkcji dla \(x=-6\), \(x=6\) oraz \(x=\frac{11}{2}\).
Zgodnie z tym co napisaliśmy sobie na początku musimy podstawić teraz te trzy punkty do wzoru naszej funkcji i sprawdzić który z nich da nam najmniejszy wynik.
$$f(-6)=(-6)^2-11\cdot(-6)=36-(-66)=36+66=102 \ ,\
\ ,\
f(6)=6^2-11\cdot6=36-66=-30 \ ,\
\ ,\
f\left(\frac{11}{2}\right)=\left(\frac{11}{2}\right)^2-11\cdot\left(\frac{11}{2}\right)=\frac{121}{4}-\frac{121}{2}= \ ,\
=\frac{121}{4}-\frac{242}{4}=-\frac{121}{4}=-30\frac{1}{4}$$
Najmniejszą wartość funkcji otrzymaliśmy więc w wierzchołku funkcji i jest ona równa \(-30\frac{1}{4}\).
Teoria:
W trakcie opracowania
matura poprawkowa - CKE