{tytul} Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
MATEMA tix .pl
Matematyczne wyzwania
Arkusz 2018
Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów

Arkusz 2018

Matura z matematyki (poziom podstawowy) - Maj 2018 Zadanie 9 z 1032
Zadanie nr 9. (1pkt)
Wykresem funkcji kwadratowej \(f(x)=x^2-6x-3\) jest parabola, której wierzchołkiem jest punkt o współrzędnych:
A \((-6,-3)\)
B \((-6, 69)\)
C \((3,-12)\)
D \((6,-3)\)
Odpowiedź:      

C

Rozwiązanie:      
Krok 1. Wyznaczenie współrzędnej iksowej (czyli \(p\)) wierzchołka paraboli. Współrzędną iksową wierzchołka paraboli oznaczamy symbolem \(p\) i możemy ją obliczyć korzystając ze wzoru: $$p=\frac{-b}{2a}$$ Współczynniki \(a\) oraz \(b\) odczytamy bezpośrednio ze wzoru funkcji, bo jest ona zapisana w postaci ogólnej, zatem: \(a=1\) oraz \(b=-6\). Podstawiając to do wzoru na współrzędną \(p\) otrzymamy: $$p=\frac{-(-6)}{2\cdot1} \           ,\ p=\frac{6}{2} \           ,\ p=3$$ I tutaj tak naprawdę moglibyśmy zakończyć już rozwiązywanie tego zadania, bowiem tylko w trzeciej odpowiedzi mamy współrzędną iksową równą \(3\). Gdyby jednak okazało się, że pasowałaby nam jeszcze jakaś inna odpowiedź, to trzeba byłoby obliczyć współrzędną igrekową. Krok 2. Obliczenie współrzędnej igrekowej (czyli \(q\)) wierzchołka paraboli. Standardowo współrzędną igrekową moglibyśmy obliczyć korzystając ze wzoru: $$q=\frac{-Δ}{4a}$$ Nie mniej jednak możemy tę współrzędną obliczyć nieco szybciej, bez liczenia delty. Wystarczy, że do wzoru funkcji \(f(x)=x^2-6x-3\) podstawimy obliczoną w pierwszym kroku współrzędną iksową wierzchołka. Podstawiając \(x=3\) do wzoru funkcji otrzymamy: $$f(3)=3^2-6\cdot3-3 \           ,\ f(3)=9-18-3 \           ,\ f(3)=-12$$ To oznacza, że współrzędne wierzchołka są równe \(W=(3;-12)\).
Teoria:      
W trakcie opracowania
matura - CKE
Matematyczne wyzwania © Copyright 2023-2026 All rights reserved
Arkusz 2018 Validator CSS Validator HTML