Hania zaprojektowała i wykonała czapeczkę na bal urodzinowy młodszego brata. Czapeczka miała kształt powierzchni bocznej stożka o średnicy podstawy \(d=20cm\), wysokości \(H=25cm\) i tworzącej \(l\). Żeby wykonać czapeczkę, Hania najpierw narysowała na kartonie figurę płaską \(ABS\) o kształcie wycinka koła o promieniu \(l\) i środku \(S\) (zobacz rysunek 1.). Następnie wycięła tę figurę z kartonu, odpowiednio ją wymodelowała
Rozważmy bryłę powstałą w następujący sposób: w walcu, którego wysokość jest równa \(4\), a promień podstawy \(2\), wydrążono stożek o podstawie pokrywającej się z górną podstawą walca i wierzchołku leżącym w odległości \(1\) od dolnej podstawy walca (jak na rysunku).
Objętość powstałej bryły jest równa:
Tworząca stożka jest o \(2\) dłuższa od promienia jego podstawy, a pole powierzchni bocznej jest o \(2\pi\) większe od pola podstawy. Promień podstawy tego stożka jest równy:
Dwa stożki o takich samych podstawach połączono podstawami w taki sposób jak na rysunku. Stosunek wysokości tych stożków jest równy \(3:2\) . Objętość stożka o krótszej wysokości jest równa \(12cm^3\).
Objętość bryły utworzonej z połączonych stożków jest równa:
Pole powierzchni całkowitej pewnego stożka jest \(3\) razy większe od pola powierzchni pewnej kuli. Promień tej kuli jest równy \(2\) i jest taki sam jak promień podstawy tego stożka. Tworząca tego stożka ma długość równą:
Promień kuli i promień podstawy stożka są równe \(4\). Pole powierzchni kuli jest równe polu powierzchni całkowitej stożka. Długość tworzącej stożka jest równa:
Stożek o promieniu podstawy \(r\) i kula o tym samym promieniu mają równe objętości. Tangens kąta między tworzącą i płaszczyzną podstawy tego stożka jest równy:
Do wazonu w kształcie odwróconego stożka nalano tyle wody, aby sięgnęła do połowy jego wysokości (patrz rysunek). Jaka część objętości wazonu nie została napełniona?
Objętość stożka ściętego (rysunek obok) dana jest wzorem \(V=\frac{1}{3}πH(r^2+rR+R^2)\), gdzie \(H\) jest wysokością bryły, a \(r\) i \(R\) są promieniami jej podstaw. Dane są: \(V=52π\), \(r=2\), \(R=6\). Wysokość bryły jest równa:
Dany jest stożek o objętości \(8π\), w którym stosunek wysokości do promienia podstawy jest równy \(3:8\). Oblicz pole powierzchni bocznej tego stożka.
Dany jest stożek, którego przekrojem osiowym jest trójkąt o bokach długości: \(6\), \(10\) i \(10\). Stosunek pola powierzchni bocznej stożka do pola jego podstawy jest równy:
Tworząca stożka ma długość \(17\), a wysokość stożka jest krótsza od średnicy jego podstawy o \(22\). Oblicz pole powierzchni całkowitej i objętość tego stożka.
Dany jest stożek, którego przekrój osiowy jest trójkątem prostokątnym. Objętość stożka jest równa \(V=18π\sqrt{2}\). Wyznacz pole powierzchni całkowitej stożka.
Stożek powstał w wyniku obrotu trójkąta prostokątnego o przyprostokątnych \(13\) i \(15\) wokół dłuższej przyprostokątnej. Promień podstawy tego stożka jest równy:
Stożek powstał w wyniku obrotu trójkąta prostokątnego o przyprostokątnych \(6\) i \(13\) wokół krótszej przyprostokątnej. Promień podstawy tego stożka jest równy:
Tworząca stożka ma długość \(l\), a promień jego podstawy jest równy \(r\).
Powierzchnia boczna tego stożka jest \(2\) razy większa od pola jego podstawy. Wówczas:
Dziecko nasypuje piasek do foremek w kształcie stożka o promieniu podstawy \(5cm\) i tworzącej \(13cm\). Następnie przesypuje go do wiaderka w kształcie walca o wysokości \(36cm\) i promieniu dwa razy większym niż promień foremki. Jaką część wiaderka wypełniło dziecko, wsypując \(6\) foremek piasku?
W czasie prac wykopaliskowych wydobyto \(45m^3\) ziemi, z której usypano kopiec w kształcie stożka. Jego pole podstawy jest równe \(54m^2\). Oblicz wysokość kopca, pamiętając, że objętość stożka jest równa jednej trzeciej iloczynu pola podstawy i wysokości.