Zbiory arkuszy egzaminacyjnych z matematyki dla ósmoklasistów. Znajdziesz tu różnorodne zadania egzaminacyjne, przykładowe arkusze, rozwiązania zadań, testy z matematyki oraz wiele innych przydatnych materiałów
Próbny egzamin ósmoklasisty z matematyki - Nowa Era 2020 Zadanie 11 z 21
Zadanie nr 11. (1pkt)
W układzie współrzędnych zaznaczono trzy spośród czterech wierzchołków trapezu \(KLMN\). Współrzędne wszystkich wierzchołków tego trapezu są liczbami całkowitymi, a jego pole jest równe \(12\).
Jakie współrzędne ma wierzchołek \(N\) tego trapezu?
A \(N=(2;-2)\)
B \(N=(2;-1)\)
C \(N=(2;0)\)
D \(N=(2;1)\)
Rozwiązanie:
Krok 1. Obliczenie długości krótszej podstawy trapezu.
Do obliczenia pola powierzchni trapezu potrzebujemy znać długości obydwu podstaw oraz wysokość figury. Spoglądając na rysunek widzimy, że nasz trapez jest tak jakby przekręcony o \(90°\), ale to nie przeszkadza nam w poznaniu dwóch kluczowych długości. Zwróćmy uwagę, że odcinek \(KL\) ma długość \(6\) jednostek, czyli że \(a=6\). Widzimy też, że jak z punktu \(M\) poprowadzimy prostą prostopadłą, to będzie miała ona długość równą \(3\) jednostki, zatem wysokość \(h=3\).
Skoro \(a=6\) oraz \(h=3\) i wiemy, że \(P=12\), to możemy obliczyć długość drugiej podstawy tego trapezu:
$$P=\frac{1}{2}(a+b)\cdot h \ ,\
12=\frac{1}{2}(6+b)\cdot3 \ ,\
4=\frac{1}{2}(6+b) \ ,\
4=3+\frac{1}{2}b \ ,\
1=\frac{1}{2}b \ ,\
b=2$$
Krok 2. Wyznaczenie współrzędnych wierzchołka \(N\).
Skoro \(b=2\), to wierzchołek \(N\) musi być oddalony o \(2\) jednostki od wierzchołka \(N\). Aby powstał trapez, to ten wierzchołek \(N\) musi być w linii prostej nad \(M\). Skoro więc \(M=(2;-3)\), to \(N=(2;-1)\).
Teoria:
W trakcie opracowania
Nowa Era