Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
Matura próbna z matematyki (poziom podstawowy) - Nowa Era 2022 Zadanie 22 z 32
Zadanie nr 22. (1pkt)
Odcinek o końcach \(A=(1,3)\) i \(B=(5,11)\) jest zawarty w prostej o równaniu \(y=2x+1\). Symetralna odcinka \(AB\) ma równanie:
A \(y=-2x-13\)
B \(y=-2x+5\)
C \(y=-\frac{1}{2}x+\frac{17}{2}\)
D \(y=-\frac{1}{2}x+\frac{7}{2}\)
Rozwiązanie:
Krok 1. Wyznaczenie współrzędnych środka odcinka.
Symetralna odcinka to prosta prostopadła, która przechodzi przez środek tego odcinka. Wyznaczmy zatem najpierw współrzędne środka odcinka \(AB\). Korzystając ze wzoru na środek odcinka możemy zapisać, że:
$$S=\left(\frac{x_{A}+x_{B}}{2};\frac{y_{A}+y_{B}}{2}\right) \ ,\
S=\left(\frac{1+5}{2};\frac{3+11}{2}\right) \ ,\
S=\left(\frac{6}{2};\frac{14}{2}\right) \ ,\
S=(3;7)$$
Krok 2. Wyznaczenie równania symetralnej odcinka \(AB\).
Symetralna musi być prostą prostopadłą do prostej o równaniu \(y=2x+1\). Dwie proste są względem siebie prostopadłe tylko wtedy, gdy iloczyn ich współczynników kierunkowych jest równy \(-1\). Skoro tak, to nasza symetralna musi mieć \(a=-\frac{1}{2}\), bo \(\left(-\frac{1}{2}\right)\cdot2=-1\). To oznacza, że symetralna wyrażać się będzie równaniem \(y=-\frac{1}{2}x+b\).
Brakujący współczynnik \(b\) obliczymy podstawiając współrzędne środka odcinka \(AB\), zatem:
$$7=-\frac{1}{2}\cdot3+b \ ,\
7=-\frac{3}{2}+b \ ,\
b=8\frac{1}{2}=\frac{17}{2}$$
To oznacza, że symetralna odcinka \(AB\) ma równanie \(y=-\frac{1}{2}x+\frac{17}{2}\).
Teoria:
W trakcie opracowania
matura próbna - Nowa Era