Zbiory arkuszy egzaminacyjnych z matematyki dla ósmoklasistów. Znajdziesz tu różnorodne zadania egzaminacyjne, przykładowe arkusze, rozwiązania zadań, testy z matematyki oraz wiele innych przydatnych materiałów
Egzamin ósmoklasisty (termin dodatkowy) 2022 - matematyka Zadanie 14 z 19
Zadanie nr 14. (1pkt)
Na rysunku przedstawiono prostokąt. Długość dłuższego boku oznaczono symbolem \(x\) oraz opisano za pomocą wyrażenia algebraicznego \(27-2x\). Długość krótszego boku oznaczono symbolem \(y\) oraz opisano za pomocą wyrażenia algebraicznego \(2y-3\).
Które równanie nie opisuje poprawnej zależności między wartościami \(x\) i \(y\)?
A \(x-y=6\)
B \(x+y=12\)
C \(x\cdot y=27\)
D \(y:x=3\)
Rozwiązanie:
Krok 1. Obliczenie wartości \(x\) oraz \(y\).
Leżące naprzeciw siebie długości boków prostokąta mają jednakowe miary. To pozwoli nam ułożyć dwa następujące równania, z których obliczymy wartości \(x\) oraz \(y\).
Pierwsza para boków:
$$x=27-2x \ ,\
3x=27 \ ,\
x=9$$
Druga para boków:
$$y=2y-3 \ ,\
-y=-3 \ ,\
y=3$$
Krok 2. Sprawdzenie, które z podanych równań jest niepoprawne.
Musimy sprawdzić, które z podanych równań jest niepoprawne. W tym celu najłatwiej będzie podstawić wyznaczone \(x=9\) oraz \(y=3\) do działań znajdujących się po lewej stronie równań i sprawdzić, czy otrzymany wynik jest identyczny jak w podanym równaniu. W związku z tym:
Odp. A.
$$x-y=9-3=6$$
Czyli tutaj opisana zależność \(x-y=6\) jest prawidłowa.
Odp. B.
$$x+y=9+3=12$$
Czyli tutaj opisana zależność \(x+y=12\) jest prawidłowa.
Odp. C.
$$x\cdot y=9\cdot3=27$$
Czyli tutaj opisana zależność \(x\cdot y=27\) jest prawidłowa.
Odp. D.
$$y:x=3:9=\frac{1}{3}$$
Czyli tutaj opisana zależność \(y:x=3\) jest niepoprawna i to właśnie będzie poszukiwana przez nas odpowiedź.
Teoria:
W trakcie opracowania
CKE