{tytul} Zbiory arkuszy egzaminacyjnych z matematyki dla ósmoklasistów. Znajdziesz tu różnorodne zadania egzaminacyjne, przykładowe arkusze, rozwiązania zadań, testy z matematyki oraz wiele innych przydatnych materiałów
MATEMA tix .pl
Matematyczne wyzwania
Arkusz
Zbiory arkuszy egzaminacyjnych z matematyki dla ósmoklasistów. Znajdziesz tu różnorodne zadania egzaminacyjne, przykładowe arkusze, rozwiązania zadań, testy z matematyki oraz wiele innych przydatnych materiałów

Arkusz

Egzamin ósmoklasisty z matematyki - Przykładowy arkusz CKE Zadanie 8 z 22
Zadanie nr 8. (1pkt)
Punkt kratowy to miejsce przecięcia się linii kwadratowej siatki. Pole wielokąta, którego wierzchołki znajdują się w punktach kratowych kwadratowej siatki na płaszczyźnie, można obliczyć ze wzoru Picka:

$$P=W+\frac{1}{2}B-1$$



gdzie \(P\) oznacza pole wielokąta, \(W\) – liczbę punktów kratowych leżących wewnątrz wielokąta, a \(B\) – liczbę punktów kratowych leżących na brzegu tego wielokąta.

Matematyka jest prosta



W wielokącie przedstawionym na rysunku \(W=3\) oraz \(B=5\), zatem \(P=4,5\). Wewnątrz pewnego wielokąta znajduje się \(5\) punktów kratowych, a na jego brzegu jest \(6\) punktów kratowych. Pole tego wielokąta jest równe:
A \(6\)
B \(6,5\)
C \(7\)
D \(7,5\)
Odpowiedź:      

C

Rozwiązanie:      
Korzystając z podanego wzoru możemy zapisać, że: $$P=5+\frac{1}{2}\cdot6-1 \           ,\ P=5+3-1 \           ,\ P=7$$
Teoria:      
W trakcie opracowania
CKE
Matematyczne wyzwania © Copyright 2023-2026 All rights reserved
Arkusz Validator CSS Validator HTML