Zbiory arkuszy egzaminacyjnych z matematyki dla ósmoklasistów. Znajdziesz tu różnorodne zadania egzaminacyjne, przykładowe arkusze, rozwiązania zadań, testy z matematyki oraz wiele innych przydatnych materiałów
Egzamin ósmoklasisty 2019 - matematyka Zadanie 4 z 21
Zadanie nr 4. (1pkt)
Dane są cztery wyrażenia:
I. \(4+\sqrt{35}\)
II. \(6+\sqrt{17}\)
III. \(17-\sqrt{48}\)
IV. \(15-\sqrt{26}\)
Wartości których wyrażeń są mniejsze od \(10\)?
A I i II
B II i III
C III i IV
D I i IV
Rozwiązanie:
Kluczem do rozwiązania tego zadania jest dostrzeżenie, że:
\(\sqrt{35}\) to mniej niż \(6\), bo \(\sqrt{36}=6\)
\(\sqrt{17}\) to więcej niż \(4\), bo \(\sqrt{16}=4\)
\(\sqrt{48}\) to mniej niż \(7\), bo \(\sqrt{49}=7\)
\(\sqrt{26}\) to więcej niż \(5\), bo \(\sqrt{25}=5\)
W związku z tym:
\(4+\sqrt{35}\) to nieco mniej niż \(10\).
\(6+\sqrt{17}\) to nieco więcej niż \(10\).
\(17-\sqrt{48}\) to nieco więcej niż \(10\).
\(15-\sqrt{26}\) to nieco mniej niż \(10\).
Wyrażenia mniejsze od \(10\) to zatem I oraz IV.
Teoria:
W trakcie opracowania
CKE