Zbiory arkuszy egzaminacyjnych z matematyki dla ósmoklasistów. Znajdziesz tu różnorodne zadania egzaminacyjne, przykładowe arkusze, rozwiązania zadań, testy z matematyki oraz wiele innych przydatnych materiałów
Egzamin ósmoklasisty (termin dodatkowy) 2021 - matematyka Zadanie 12 z 19
Zadanie nr 12. (1pkt)
Na krótszym boku prostokąta zbudowano trójkąt równoboczny o obwodzie \(18 cm\), a na dłuższym boku prostokąta zbudowano kwadrat o polu równym \(64 cm^2\).
Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe. Pole prostokąta jest o \(16 cm^2\) mniejsze od pola kwadratu powstałego na dłuższym boku prostokąta.
Obwód prostokąta jest o \(10 cm\) dłuższy od obwodu trójkąta równobocznego zbudowanego na krótszym boku prostokąta.
Pole prostokąta jest o \(16 cm^2\) mniejsze od pola kwadratu powstałego na dłuższym boku prostokąta.
Odpowiedź:
1) PRAWDA
2) PRAWDA
Rozwiązanie:
Krok 1. Obliczenie długości boków prostokąta.
Trójkąt równoboczny ma wszystkie boki równej długości, zatem skoro obwód tej figury wynosi \(18cm\), to bok tego trójkąta będzie mieć długość:
$$18cm:3=6cm$$
Tym samym krótszy bok prostokąta ma długość \(6cm\).
Teraz obliczmy długość boku kwadratu. Jeżeli pole tego kwadratu wynosi \(64cm^2\), to korzystając ze wzoru na pole kwadratu wyjdzie nam, że:
$$P=a^2 \ ,\
64cm^2=a^2 \ ,\
a=8cm \quad\lor\quad a=-8cm$$
Długość boku kwadratu nie może być ujemna, więc zostaje nam \(a=8cm\). Tym samym dłuższy bok prostokąta ma długość \(8cm\).
Krok 2. Ocena prawdziwości pierwszego zdania.
Nasz prostokąt ma wymiary \(6cm\times8cm\). Jego pole powierzchni będzie więc równe:
$$P=6cm\cdot8cm \ ,\
P=48cm^2$$
Pole kwadratu było równe \(64cm^2\), czyli faktycznie pole prostokąta jest o \(16cm^2\) mniejsze (bo \(64-48=16\)). Zdanie jest więc prawdą.
Krok 3. Ocena prawdziwości drugiego zdania.
Obwód naszego prostokąta będzie równy:
$$Obw=2\cdot6cm+2\cdot8cm \ ,\
Obw=12cm+16cm \ ,\
Obw=28cm$$
Skoro obwód trójkąta wynosił \(18cm\), to znaczy, że obwód naszego prostokąta jest faktycznie o \(10cm\) dłuższy (bo \(28-18=10\)). Zdanie jest więc prawdą.
Teoria:
W trakcie opracowania
CKE