Dany jest trójkąt \(ABC\) o bokach długości: \(|AB|=4\), \(|BC|=5\), \(|AC|=6\). Na tym trójkącie opisano okrąg o środku w punkcie \(S\) i promieniu \(R\).
Oblicz promień \(R\) okręgu opisanego na trójkącie \(ABC\).
Punkty \(A=(80,-1)\) i \(B=(-6,-19)\) są wierzchołkami trójkąta prostokątnego \(ABC\). W tym trójkącie kąt przy wierzchołku \(C\) jest prosty. Środkiem okręgu opisanego na tym trójkącie jest punkt o współrzędnych:
Bok \(AB\) jest średnicą, a punkt \(S\) jest środkiem okręgu opisanego na trójkącie \(ABC\). Punkt \(D\) leży na tym okręgu, a odcinek \(SD\) zawarty jest w symetralnej boku \(BC\) trójkąta (zobacz rysunek).
Wykaż, że odcinek \(AD\) jest zawarty w dwusiecznej kąta \(CAB\).
Podstawą graniastosłupa prostego \(ABCDEF\) jest trójkąt prostokątny \(ABC\), w którym \(|\sphericalangle ACB|=90°\) (zobacz rysunek). Stosunek długości przyprostokątnej \(AC\) tego trójkąta do długości przyprostokątnej \(BC\) jest równy \(4:3\). Punkt \(S\) jest środkiem okręgu opisanego na trójkącie \(ABC\), a długość odcinka \(SC\) jest równa \(5\). Pole ściany bocznej \(BEFC\) graniastosłupa jest równe \(48\). Oblicz
Punkty \(D\) i \(E\) leżą na okręgu opisanym na trójkącie równobocznym \(ABC\) (zobacz rysunek). Odcinek \(CD\) jest średnicą tego okręgu. Kąt wpisany \(DEB\) ma miarę \(α\).
Podstawą graniastosłupa prostego \(ABCDEF\) jest trójkąt prostokątny \(ABC\), w którym \(|\sphericalangle ACB|=90°\) (zobacz rysunek). Stosunek długości przyprostokątnej \(AC\) tego trójkąta do długości przyprostokątnej \(BC\) jest równy \(4:3\). Punkt \(S\) jest środkiem okręgu opisanego na trójkącie \(ABC\), a długość odcinka \(SC\) jest równa \(5\). Pole ściany bocznej \(BEFC\) graniastosłupa jest równe \(48\). Oblicz
Dany jest ostrosłup prawidłowy trójkątny. Ściana boczna tworzy z płaszczyzną podstawy kąt \(30°\). Promień okręgu opisanego na podstawie jest równy \(2\sqrt{3}\). Oblicz objętość i pole powierzchni bocznej podanej bryły.
Środek \(S\) okręgu opisanego na trójkącie równoramiennym \(ABC\), o ramionach \(AC\) i \(BC\), leży wewnątrz tego trójkąta (zobacz rysunek).
Wykaż, że miara kąta wypukłego \(ASB\) jest cztery razy większa od miary kąta wypukłego \(SBC\).
Punkt \(S\) jest środkiem okręgu opisanego na trójkącie ostrokątnym \(ABC\). Kąt \(ACS\) jest trzy razy większy od kąta \(BAS\), a kąt \(CBS\) jest dwa razy większy od kąta \(BAS\). Oblicz kąty trójkąta \(ABC\).
Na trójkącie opisano okrąg. Wierzchołki trójkąta podzieliły ten okrąg na łuki, których długości pozostają w stosunku \(10:6:4\). Odczytaj z tablic i zapisz przybliżoną wartość cosinusa najmniejszego kąta tego trójkąta.