Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
Przykładowy arkusz CKE Zadanie 29 z 2651
Zadanie nr 29. (2pkt)
Na trójkącie o bokach długości \(\sqrt{7}\), \(\sqrt{8}\), \(\sqrt{15}\) opisano okrąg. Oblicz promień tego okręgu.
Odpowiedź:
\(r=\frac{\sqrt{15}}{2}\)
Rozwiązanie:
Krok 1. Dostrzeżenie tego, że jest to trójkąt prostokątny.
Korzystając z Twierdzenia Pitagorasa możemy udowodnić, że ten trójkąt jest prostokątny:
$$a^2+b^2=c^2 \ ,\
(\sqrt{7})^2+(\sqrt{8})^2=(\sqrt{15})^2 \ ,\
7+8=15 \ ,\
L=P$$
Krok 2. Skorzystanie z własności okręgów opisanych na trójkątach prostokątnych.
Jeśli okrąg jest opisany na trójkącie prostokątny, to długość średnicy tego okręgu jest równa długości przeciwprostokątnej trójkąta.
W związku z tym średnica tego okręgu ma długość \(\sqrt{15}\). Nas jednak interesuje długość promienia okręgu, a nie średnicy, zatem:
$$r=\frac{\sqrt{15}}{2}$$
Teoria:
W trakcie opracowania
materiał edukacyjny - CKE