Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
Matura z matematyki (poziom podstawowy) - Maj 2014 Zadanie 15 z 34
Zadanie nr 15. (1pkt)
Liczba punktów wspólnych okręgu o równaniu \((x+2)^2+(y-3)^2=4\) z osiami układu współrzędnych jest równa:
A \(0\)
B \(1\)
C \(2\)
D \(4\)
Rozwiązanie:
Krok 1. Odczytanie współrzędnych środka okręgu.
Okrąg o równaniu w postaci \((x-a)^2+(y-b)^2=r^2\) ma środek w punkcie \(S=(a;b)\). To oznacza, że z treści zadania i z zapisanego tam równania możemy odczytać współrzędne środka (uważając na znaki), a będzie to \(S=(-2;3)\).
Krok 2. Obliczenie długości promienia.
Z tego samego równania okręgu wynika też, że \(r^2\) (czyli kwadrat promienia) jest równy \(4\). Skoro \(r^2=4\), to \(r=2\).
Krok 3. Sporządzenie rysunku poglądowego i wybór prawidłowej odpowiedzi.
Jeśli stworzymy dobry (i w miarę dokładny) rysunek szkicowy, to zauważymy że jest tylko jeden punkt wspólny między okręgiem a osiami układu współrzędnych i tym punktem będzie \(A=(0;3)\).
Teoria:
W trakcie opracowania
matura - CKE