{tytul} Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
MATEMA tix .pl
Matematyczne wyzwania
Arkusz 2015
Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów

Arkusz 2015

Matura próbna z matematyki (poziom podstawowy) - Operon 2015 Zadanie 9 z 33
Zadanie nr 9. (1pkt)
W okrąg o środku \(O\) wpisano trójkąt ostrokątny \(ABC\). Jeśli \(|\sphericalangle ABO|=48°\), to:
A \(|\sphericalangle ACB|=42°\)
B \(|\sphericalangle ACB|=48°\)
C \(|\sphericalangle ACB|=52°\)
D \(|\sphericalangle ACB|=58°\)
Odpowiedź:      

A

Rozwiązanie:      
Krok 1. Sporządzenie rysunku pomocniczego. Zgodnie z informacjami z treści zadania możemy stworzyć następujący rysunek: Skąd wiemy, że kąt \(BAO\) także ma \(48°\)? Trójkąt \(ABO\) musi być równoramienny (ramiona są długości promienia), zatem kąty przy podstawie mają jednakową miarę. Krok 2. Obliczenie miary kąta \(AOB\). W trójkącie \(ABO\) jak w każdym innym suma miar kątów musi być równa \(180°\), zatem kąt \(AOB\) ma miarę: $$|\sphericalangle AOB|=180°-48°-48°=84°$$ Krok 3. Obliczenie miary kąta \(ACB\). Zgodnie z własnosciami kątów środkowych i wpisanych, miara kąta \(ACB\) jest dwukrotnie mniejsza od miary kąta środkowego \(AOB\). To oznacza, że: $$|\sphericalangle ACB|=84°:2=42°$$
Teoria:      
W trakcie opracowania
matura próbna - Operon
Matematyczne wyzwania © Copyright 2023-2026 All rights reserved
Arkusz 2015 Validator CSS Validator HTML