{tytul} Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
MATEMA tix .pl
Matematyczne wyzwania
Arkusz 2014
Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów

Arkusz 2014

Matura z matematyki (poziom podstawowy) - Maj 2014 Zadanie 29 z 34
Zadanie nr 29. (2pkt)
Na rysunku przedstawiono fragment wykresu funkcji \(f\), który powstał w wyniku przesunięcia wykresu funkcji określonej wzorem \(y=\frac{1}{x}\) dla każdej liczby rzeczywistej \(x\neq0\).



Matematyka jest prosta



a) Odczytaj z wykresu i zapisz zbiór tych wszystkich argumentów, dla których wartości funkcji \(f\) są większe od \(0\).

b) Podaj miejsce zerowe funkcji \(g\) określonej wzorem \(g(x)=f(x-3)\).
Odpowiedź:      

a) \(x\in(2;3)\)
b) \(x=6\)

Rozwiązanie:      
Krok 1. Podanie pożądanego zbioru argumentów. Z wykresu możemy odczytać, że funkcja przyjmuje wartości większe od zera tylko dla \(x\in(2;3)\). Krok 2. Podanie miejsca zerowego dla funkcji \(g(x)=f(x-3)\). Nasza funkcja \(f(x)\) ma tylko jedno miejsce zerowe i jest to \(x=3\). Przesunięcie tej funkcji o trzy jednostki w prawo (a tak będzie wyglądać funkcja \(g(x)\)) sprawi, że miejsce zerowe nadal będzie jedno i tym razem będzie to \(x=6\).
Teoria:      
W trakcie opracowania
matura - CKE
Matematyczne wyzwania © Copyright 2023-2026 All rights reserved
Arkusz 2014 Validator CSS Validator HTML