Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
Matura z matematyki (poziom podstawowy) - Maj 2017 Zadanie 27 z 34
Zadanie nr 27. (2pkt)
Wykaż, że liczba \(4^{2017}+4^{2018}+4^{2019}+4^{2020}\) jest podzielna przez \(17\).
Odpowiedź:
Udowodniono wyłączając odpowiednie czynniki przed nawias.
Rozwiązanie:
Aby wykazać, że dana liczba jest podzielna przez \(17\) to dobrze byłoby zamienić to dodawanie na iloczyn liczb (wyłączając przed nawias odpowiednie wartości) i to w taki sposób by jednym z czynników była albo liczba \(17\) albo jej wielokrotność. Na początku warto wyciągnąć przed nawias wartość \(4^{2017}\):
$$4^{2017}+4^{2018}+4^{2019}+4^{2020}= \ ,\
=4^{2017}\cdot(1+4^1+4^2+4^3)= \ ,\
=4^{2017}\cdot(1+4+16+64)= \ ,\
=4^{2017}\cdot85= \ ,\
=4^{2017}\cdot17\cdot5$$
Doprowadzenie równania do tej postaci kończy nasz dowód, bo skoro jednym z czynników równania jest liczba \(17\), to całe działanie jest także podzielne przez \(17\).
Teoria:
W trakcie opracowania
matura - CKE