Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
Matura próbna z matematyki (poziom podstawowy) - Nowa Era 2016 Zadanie 12 z 33
Zadanie nr 12. (1pkt)
Pan Krzysztof pokonuje trasę Warszawa-Kraków w czasie \(t\) ze średnią prędkością \(v\). Aby skrócić czas podróży o \(20\%\), pan Krzysztof musi średnią prędkość:
A zwiększyć o \(25\%\)
B zwiększyć o \(20\%\)
C zmniejszyć o \(20\%\)
D zmniejszyć o \(25\%\)
Rozwiązanie:
Krok 1. Wprowadzenie oznaczeń i zapisanie równań.
Na wstępie możemy od razu odrzucić dwie ostatnie odpowiedzi, bo nawet na logikę nie jest możliwe to, by jadąc z mniejszą prędkością, pokonać szybciej tą samą trasę.
Ze wzoru \(v=\frac{s}{t}\) wynika, że \(s=v\cdot t\). W obydwu przypadkach pokonana trasa jest niezmienna, zmienne za to będą prędkość \(v\) oraz czas \(t\). Jeżeli skrócimy czas podróży o \(20\%\), to czas jazdy wyniesie \(0,8t\). W związku z tym możemy nawet sobie rozpisać, że:
Standardowa podróż: \(s=v\cdot t\)
Podróż o \(20\%\) krótsza: \(s=v_{nowa}\cdot0,8t\)
Skoro w jednym i drugim przypadku pokonana trasa jest jednakowa, to możemy zapisać, że:
$$v\cdot t=v_{nowa}\cdot0,8t \quad\bigg/:t \ ,\
v=0,8v_{nowa} \quad\bigg/:0,8 \ ,\
v_{nowa}=\frac{v}{0,8}$$
I tu chyba najtrudniejsza część zadania, bowiem jak teraz dowiedzieć się z tego zapisu o ile procent trzeba zwiększyć poszukiwaną prędkość? Kreska ułamkowa jest formą dzielenia, zatem możemy zastąpić \(\frac{v}{0,8}\) dzieleniem \(v:\frac{4}{5}\). Teraz pamiętając o tym, że dzielenie to jest mnożenie przez odwrotność, możemy zapisać że:
$$v_{nowa}=v:\frac{4}{5} \ ,\
v_{nowa}=v\cdot\frac{5}{4} \ ,\
v_{nowa}=1,25v \ ,\
v_{nowa}=125\%v$$
Skoro nowa prędkość stanowi \(125\%\) prędkości starej, to znaczy, że musimy zwiększyć prędkość o \(25\%\).
Teoria:
W trakcie opracowania
matura próbna - Nowa Era