Na rysunku, w kartezjańskim układzie współrzędnych \((x,y)\), przedstawiono wykres funkcji \(f\) określonej dla każdego \(x\in\langle-5, 4)\). Na tym wykresie zaznaczono punkty o współrzędnych całkowitych.
Zadanie 1. Zapisz w wykropkowanym miejscu zbiór wartości funkcji \(f\).
$$.....................$$
Zadanie 2. Oceń prawdziwość poniższych stwierdzeń. Wybierz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest
Funkcja kwadratowa \(f\) jest określona wzorem \(f(x)=3x^2+bx-5\) dla każdej liczby rzeczywistej \(x\). Współczynnik \(b\) jest liczbą rzeczywistą mniejszą od zera.
Dokończ zdanie. Zaznacz odpowiedź A, B albo C oraz jej uzasadnienie 1., 2. albo 3.
Funkcja \(f\):
A. ma dwa rzeczywiste miejsca zerowe,
B. ma jedno rzeczywiste miejsce zerowe,
C. nie ma rzeczywistych miejsc zerowych,
ponieważ
1. \(b^2+60\gt0\)
2. \(b^2+60=0\)
3.
Funkcja kwadratowa \(f(x)=ax^2+bx+c\) ma dwa miejsca zerowe \(x_{1}=-2\frac{1}{2}\) i \(x_{2}=1\). Wykres funkcji \(f\) przechodzi przez punkt \(A(-3,8)\). Wyznacz najmniejszą wartość funkcji \(f\).
Funkcja kwadratowa \(f(x)=ax^2+bx+c\) ma dwa miejsca zerowe \(x_{1}=-2\) i \(x_{2}=6\). Wykres funkcji \(f\) przechodzi przez punkt \(A=(1,-5)\). Oblicz najmniejszą wartość funkcji \(f\).
Funkcja liniowa \(f\) jest określona wzorem \(f(x)=(a+1)x+11\), gdzie \(a\) to pewna liczba rzeczywista, ma miejsce zerowe równe \(x=\frac{3}{4}\). Stąd wynika, że:
Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej \(f\). Wierzchołkiem tej paraboli jest punkt \(W=(2,-4)\). Liczby \(0\) i \(4\) to miejsca zerowe funkcji \(f\).
Zbiorem wartości funkcji \(f\) jest przedział:
Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej \(f\). Wierzchołkiem tej paraboli jest punkt \(W=(2,-4)\). Liczby \(0\) i \(4\) to miejsca zerowe funkcji \(f\).
Największa wartość funkcji \(f\) w przedziale \(\langle1, 4\rangle\) jest równa:
Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej \(f\). Wierzchołkiem tej paraboli jest punkt \(W=(2,-4)\). Liczby \(0\) i \(4\) to miejsca zerowe funkcji \(f\).
Osią symetrii wykresu funkcji \(f\) jest prosta o równaniu:
Ze zbioru \(A=\{-3, -2, -1, 1, 2, 3\}\) losujemy liczbę \(a\), natomiast ze zbioru \(B=\{-1, 0, 1, 2\}\) losujemy liczbę \(b\). Te liczby są odpowiednio współczynnikiem kierunkowym i wyrazem wolnym funkcji liniowej \(f(x)=ax+b\). Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że otrzymana funkcja \(f\) jest rosnąca i ma dodatnie miejsce zerowe.
Funkcja kwadratowa \(f(x)=ax^2+bx+c\) ma dwa miejsca zerowe \(x_{1}=-2\) i \(x_{2}=6\). Wykres funkcji \(f\) przechodzi przez punkt \(A=(1,-5)\). Oblicz najmniejszą wartość funkcji \(f\).
Funkcja kwadratowa ma dwa miejsca zerowe. Jednym z nich jest liczba \(-3\). Wierzchołek paraboli, będącej wykresem tej funkcji, znajduje się w punkcie \((-1,-8)\). Wyznacz wzór tej funkcji.
Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej \(f\). Wierzchołkiem tej paraboli jest punkt \(W=(1,9)\). Liczby \(-2\) i \(4\) to miejsca zerowe funkcji \(f\).
Zbiorem wartości funkcji \(f\) jest przedział:
Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej \(f\). Wierzchołkiem tej paraboli jest punkt \(W=(1,9)\). Liczby \(-2\) i \(4\) to miejsca zerowe funkcji \(f\).
Najmniejsza wartość funkcji \(f\) w przedziale \(\langle-1,2\rangle\) jest równa:
Na rysunku przedstawiono wykres funkcji \(f\).
Funkcja \(h\) określona jest dla \(x\in\langle-3,5\rangle\) wzorem \(h(x)=f(x)+q\), gdzie \(q\) jest pewną liczbą rzeczywistą. Wiemy, że jednym z miejsc zerowych funkcji \(h\) jest liczba \(x_{0}=-1\).
a) Wyznacz \(q\).
b) Podaj wszystkie pozostałe miejsca zerowe funkcji \(h\).
Na rysunku przedstawiono fragment wykresu funkcji \(f\), który powstał w wyniku przesunięcia wykresu funkcji określonej wzorem \(y=\frac{1}{x}\) dla każdej liczby rzeczywistej \(x\neq0\).
a) Odczytaj z wykresu i zapisz zbiór tych wszystkich argumentów, dla których wartości funkcji \(f\) są większe od \(0\).
b) Podaj miejsce zerowe funkcji \(g\) określonej wzorem \(g(x)=f(x-3)\).