Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
Matura poprawkowa z matematyki (poziom podstawowy) - Sierpień 2012 Zadanie 21 z 34
Zadanie nr 21. (1pkt)
Dany jest okrąg o równaniu \((x+4)^2+(y-6)^2=100\). Środek tego okręgu ma współrzędne:
A \((-4,-6)\)
B \((4,6)\)
C \((4,-6)\)
D \((-4,6)\)
Rozwiązanie:
Skorzystamy tutaj z równania okręgu \((x-a)^2+(y-b)^2=r^2\), gdzie \(a\) oraz \(b\) to współrzędne środka okręgu \(S=(a;b)\), natomiast \(r\) to długość jego promienia. Znając ten wzór i uważając na znaki możemy bez przeszkód wyznaczyć współrzędne środka okręgu:
$$(x+4)^2+(y-6)^2=100 \ ,\
(x-(-4))^2+(y-6)^2=100$$
Odczytując z tego wzoru odpowiednie współrzędne możemy powiedzieć, że \(S=(-4;6)\).
Teoria:
W trakcie opracowania
matura poprawkowa - CKE