{tytul} Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
MATEMA tix .pl
Matematyczne wyzwania
Arkusz 2018
Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów

Arkusz 2018

Matura próbna z matematyki (poziom podstawowy) - Operon 2018 Zadanie 32 z 34
Zadanie nr 32. (3pkt)
Dany jest skończony, pięciowyrazowy ciąg \((4a-5;\;a;\;b;\;b+2;\;9)\). Trzy pierwsze wyrazy tego ciągu są trzema kolejnymi wyrazami ciągu arytmetycznego, a trzy ostatnie są trzema kolejnymi wyrazami ciągu geometrycznego. Oblicz \(a\) i \(b\).
Odpowiedź:      

\(a=2, b=1\) lub \(a=\frac{1}{2}, b=4\)

Rozwiązanie:      
Krok 1. Zapisanie równań wynikających z własności ciągów. Dla trzech następujących po sobie wyrazów ciągu arytmetycznego zachodzi następująca zależność: $$a_{2}=\frac{a_{1}+a_{3}}{2}$$ Skoro trzy pierwsze wyrazy, czyli \(4a-5;\;a;\;b\), są trzema kolejnymi wyrazami ciągu arytmetycznego, to korzystając z powyższej własności otrzymamy równanie: $$a=\frac{4a-5+b}{2}$$ Dla trzech następujących po sobie wyrazów ciągu geometrycznego zachodzi następująca zależność: $${a_{2}}^2=a_{1}\cdot a_{3}$$ Skoro trzy ostatnie wyrazy, czyli \(b;\;b+2;\;9\), są trzema kolejnymi wyrazami ciągu geometrycznego, to korzystając z powyższej własności otrzymamy równanie: $$(b+2)^2=b\cdot9 \           ,\ b^2+4b+4=9b \           ,\ b^2-5b+4=0$$ Krok 2. Obliczenie wartości \(b\). Z zależności wynikającej z własności ciągów geometrycznych otrzymaliśmy równanie kwadratowe \(b^2-5b+4=0\). Rozwiązaniem tego równania będzie nasza niewiadoma \(b\). Skoro tak, to rozwiążmy to równanie, wykorzystując niezawodną deltę: Współczynniki: \(a=1,\;b=-5,\;c=4\) $$Δ=b^2-4ac=(-5)^2-4\cdot1\cdot4=25-16=9 \           ,\ \sqrt{Δ}=\sqrt{9}=3$$ $$b_{1}=\frac{-b-\sqrt{Δ}}{2a}=\frac{-(-5)-3}{2\cdot1}=\frac{5-3}{2}=\frac{2}{2}=1 \           ,\ b_{2}=\frac{-b+\sqrt{Δ}}{2a}=\frac{-(-5)+3}{2\cdot1}=\frac{5+3}{2}=\frac{8}{2}=4$$ Wyszło nam więc, że są dwie możliwości \(b=1\) oraz \(b=4\) i żadnej z nich nie możemy wykluczyć. Obydwie otrzymane odpowiedzi są jak najbardziej prawidłowe. Krok 3. Obliczenie wartości \(a\). W pierwszym kroku korzystając z własności ciągów arytmetycznych otrzymaliśmy równanie \(a=\frac{4a-5+b}{2}\). Skoro znamy już wartość \(b\), to możemy teraz obliczyć wartość \(a\). Z racji tego, że otrzymaliśmy dwa warianty naszej liczby \(b\), to musimy to uwzględnić przy wyznaczaniu wartości \(a\): Jeżeli \(b=1\), to: $$a=\frac{4a-5+b}{2} \           ,\ a=\frac{4a-5+1}{2} \           ,\ a=\frac{4a-4}{2} \           ,\ 2a=4a-4 \           ,\ -2a=-4 \           ,\ a=2$$ Jeżeli \(b=4\), to: $$a=\frac{4a-5+b}{2} \           ,\ a=\frac{4a-5+4}{2} \           ,\ a=\frac{4a-1}{2} \           ,\ 2a=4a-1 \           ,\ -2a=-1 \           ,\ a=\frac{1}{2}$$ I tu ponownie, żadnego rozwiązania nie możemy wykluczyć. To z kolei oznacza, że to zadanie ma dwa rozwiązania: \(a=2, b=1\) lub też \(a=\frac{1}{2}, b=4\).
Teoria:      
W trakcie opracowania
matura próbna - Operon
Matematyczne wyzwania © Copyright 2023-2026 All rights reserved
Arkusz 2018 Validator CSS Validator HTML