Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
Matura z matematyki (poziom podstawowy) - Czerwiec 2013 Zadanie 32 z 34
Zadanie nr 32. (4pkt)
Podstawą graniastosłupa \(ABCDEFGH\) jest prostokąt \(ABCD\) (zobacz rysunek), którego krótszy bok ma długość \(3\). Przekątna prostokąta \(ABCD\) tworzy z jego dłuższym bokiem kąt \(30°\). Przekątna \(HB\) graniastosłupa tworzy z płaszczyzną jego podstawy kąt \(60°\). Oblicz objętość tego graniastosłupa.
Rozwiązanie:
Krok 1. Sporządzenie rysunku poglądowego.
Zaznaczmy sobie na rysunku kąty \(30°\) i \(60°\) oraz odpowiednie długości boków omówione w treści zadania:
Wbrew pozorom już podczas zaznaczania odpowiednich długości można było popełnić spory błąd. Skąd wiemy, że to akurat boki \(AD\) oraz analogicznie \(BC\) są tymi krótszymi i akurat one mają długość \(3\)? Treść zadania nie sugeruje nam tego wprost, ale wynika to chociażby z własności trójkątów \(30°\), \(60°\), \(90°\), a takim jest trójkąt \(ABD\). W takich trójkątach dłuższą przyprostokątną jest ten bok, który znajduje się przy kącie \(30°\) i stąd też wiemy, że dłuższymi krawędziami są \(AB\) oraz analogicznie \(CD\), a krótszymi są \(AD\) oraz \(BC\).
Do obliczenia objętości będziemy potrzebowali znać długości boków prostokąta oraz wysokość całego graniastosłupa, zatem wyznaczmy po kolei każdą z wartości.
Krok 2. Obliczenie miary dłuższego boku prostokąta.
Do obliczenia długości, którą oznaczyliśmy sobie jako \(a\) skorzystamy z trójkąta \(ABD\). Użyjemy tutaj albo własności trójkąta \(30°, 60°, 90°\), albo funkcji tangensa:
$$tg30°=\frac{3}{a} \ ,\
\frac{\sqrt{3}}{3}=\frac{3}{a}$$
Mnożąc na krzyż otrzymamy:
$$\sqrt{3}a=9 \ ,\
a=\frac{9}{\sqrt{3}}=\frac{9\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{3}}=\frac{9\sqrt{3}}{3}=3\sqrt{3}$$
Krok 3. Obliczenie długości przekątnej podstawy.
Ponownie spoglądamy na trójkąt \(ABD\). Do obliczenia długości przekątnej \(DB\) skorzystamy z Twierdzenia Pitagorasa i z miary boku prostokąta, którą obliczyliśmy przed chwilą:
$$3^2+(3\sqrt{3})^2=|DB|^2 \ ,\
9+9\cdot3=|DB|^2 \ ,\
9+27=|DB|^2 \ ,\
|DB|^2=36 \ ,\
|DB|=6$$
Krok 4. Obliczenie wysokości graniastosłupa.
Tym razem interesuje nas trójkąt \(DBH\). Odcinek \(DH\), który oznaczyliśmy sobie jako \(H\) wyliczymy z funkcji tangensa (właśnie po to liczyliśmy przed chwilą długość przekątnej \(DB\)):
$$tg60°=\frac{H}{6} \ ,\
\sqrt{3}=\frac{H}{6} \ ,\
H=6\sqrt{3}$$
Krok 5. Obliczenie objętości graniastosłupa.
Znamy wszystkie potrzebne miary, więc możemy przejść do obliczeń objętości:
$$V=P_{p}\cdot H \ ,\
V=3\cdot3\sqrt{3}\cdot6\sqrt{3} \ ,\
V=9\sqrt{3}\cdot6\sqrt{3} \ ,\
V=54\cdot3 \ ,\
V=162$$
Teoria:
W trakcie opracowania
matura dodatkowa - CKE