Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
Matura próbna z matematyki (poziom podstawowy) - Listopad 2010 Zadanie 26 z 34
Zadanie nr 26. (2pkt)
Rozwiąż nierówność \(x^2+11x+30\le0\).
Odpowiedź:
\(x\in\langle-6;-5\rangle\)
Rozwiązanie:
Krok 1. Obliczenie miejsc zerowych wielomianu.
Współczynniki: \(a=1,\;b=11,\;c=30\)
$$Δ=b^2-4ac=11^2-4\cdot1\cdot30=121-120=1 \ ,\
\sqrt{Δ}=\sqrt{1}=1$$
$$x_{1}=\frac{-b-\sqrt{Δ}}{2a}=\frac{-11-1}{2\cdot1}=\frac{-12}{2}=-6 \ ,\
x_{2}=\frac{-b+\sqrt{Δ}}{2a}=\frac{-11+1}{2\cdot1}=\frac{-10}{2}=-5$$
Krok 2. Szkicowanie wykresu paraboli.
Parabola ma ramiona skierowane ku górze, bo współczynnik \(a\) jest dodatni. Wykres będzie miał więc następującą postać:
Punkty \(x=-6\) oraz \(x=-5\) muszą mieć koniecznie zamalowane kropki, bo w nierówności wystąpił znak \(\le\).
Krok 3. Odczytanie rozwiązania nierówności.
Interesuje nas zbiór argumentów, dla których wartość funkcji kwadratowej jest mniejsza lub równa zero (czyli w których miejscach wykres funkcji jest pod osią \(Ox\) lub dokładnie na osi). Tym zbiorem jest oczywiście: \(x\in\langle-6;-5\rangle\).
Teoria:
W trakcie opracowania
matura próbna - CKE