{tytul} Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
MATEMA tix .pl
Matematyczne wyzwania
Arkusz 2009
Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów

Arkusz 2009

Matura próbna z matematyki (poziom podstawowy) - Listopad 2009 Zadanie 32 z 34
Zadanie nr 32. (5pkt)
Uczeń przeczytał książkę liczącą \(480\) stron, przy czym każdego dnia czytał taką samą liczbę stron. Gdyby czytał każdego dnia o \(8\) stron więcej, to przeczytałby tę książkę o \(3\) dni wcześniej. Ile dni czytał tę książkę?
Odpowiedź:      

\(15\) dni.

Rozwiązanie:      
Krok 1. Zapisanie równania na podstawie danych z zadania. Oznaczmy sobie jako \(x\) liczbę dni jakie zajęło uczniowi czytanie książki. Skoro każdego dnia czytał tyle samo stron, to dziennie czytał ich \(\frac{480}{x}\). Wiemy też, że gdyby czytał o \(8\) stron więcej (czyli gdyby czytał \(\frac{480}{x}+8\)), to czytałby o \(3\) dni krócej (czyli czas czytania wyniósłby \(x-3\)). W takim razie możemy ułożyć następujące równanie: $$\left(\frac{480}{x}+8\right)\cdot(x-3)=480$$ Krok 2. Rozwiązanie utworzonego równania. Możemy albo najpierw wymnożyć oba nawiasy przez siebie, a następnie pomnożyć obie strony równania przez \(x\), albo można też od razu pomnożyć obie strony przez \(x\) i dopiero potem wymnożyć przez siebie wyrazy w nawiasach. Obydwie metody są skuteczne, tak więc może zróbmy to po kolei i wymnóżmy poszczególne wyrazy. Otrzymamy wtedy: $$\require{cancel} 480-\frac{1440}{x}+8x-24=480 \quad\bigg/\cdot x \           ,\ \cancel{480x}-1440+8x^2-24x=\cancel{480x} \           ,\ 8x^2-24x-1440=0$$ Możemy jeszcze uprościć to równanie dzieląc wszystko przez \(8\) (nie jest to konieczne, ale dzięki temu będziemy mieć mniejsze liczby w obliczeniach), zatem otrzymamy: $$x^2-3x-180=0$$ Krok 3. Rozwiązanie powstałego równania kwadratowego. Skorzystamy tutaj z metody delty, tak więc: Współczynniki: \(a=1,\;b=-3,\;c=-180\) $$Δ=b^2-4ac=(-3)^2-4\cdot1\cdot(-180)=9-(-720)=9+720=729 \           ,\ \sqrt{Δ}=\sqrt{729}=27$$ $$x_{1}=\frac{-b-\sqrt{Δ}}{2a}=\frac{-(-3)-27}{2\cdot1}=\frac{3-27}{2}=\frac{-24}{2}=-12 \           ,\ x_{2}=\frac{-b+\sqrt{Δ}}{2a}=\frac{-(-3)+27}{2\cdot1}=\frac{3+27}{2}=\frac{30}{2}=15$$ Wartość ujemną oczywiście odrzucamy, tak więc otrzymaliśmy wynik \(x=15\), a to oznacza że uczeń czytał książkę przez \(15\) dni.
Teoria:      
W trakcie opracowania
matura próbna - CKE
Matematyczne wyzwania © Copyright 2023-2026 All rights reserved
Arkusz 2009 Validator CSS Validator HTML