Wszystkich liczb naturalnych trzycyfrowych większych od \(700\), w których każda cyfra należy do zbioru \(\{1,2,3,7,8,9\}\) i żadna cyfra się nie powtarza, jest:
Trzycyfrowy kod aktywacyjny bramy wejściowej ma następującą postać: litera, cyfra, litera. Litera jest wybierana spośród \(24\) liter alfabetu i może się w kodzie powtarzać, a cyfra jest dowolna. Ile różnych kodów można w ten sposób utworzyć?
Ile jest wszystkich liczb czterocyfrowych, większych od \(3000\), utworzonych wyłącznie z cyfr \(1, 2, 3\), przy założeniu, że cyfry mogą się powtarzać, ale nie wszystkie z tych cyfr muszą być wykorzystane?
Ile jest wszystkich liczb czterocyfrowych, większych od \(3000\), utworzonych wyłącznie z cyfr \(1, 2, 3\), przy założeniu, że cyfry mogą się powtarzać, ale nie wszystkie z tych cyfr muszą być wykorzystane?