Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
Informator maturalny CKE 2023 Zadanie 14 z 72
Zadanie nr 14. (2pkt)
Udowodnij, że dla każdej liczby naturalnej \(n\) liczba \(20n^2+30n+7\) przy dzieleniu przez \(5\) daje resztę \(2\).
Odpowiedź:
Udowodniono wyłączając wspólny czynnik przed nawias.
Rozwiązanie:
Kluczem do rozwiązania tego typu zadań jest umiejętne wyłączenie wspólnego czynnika przed nawias. Haczyk polega na tym, że aby tego dokonać, musimy liczbę \(7\) rozbić na sumę \(5+2\). Otrzymamy wtedy następującą sytuację:
$$20n^2+30n+7=20n^2+30n+5+2=5\cdot(4n^2+6n+1)+2$$
Mówiąc wprost - otrzymany zapis mówi nam, że nasza liczba dzieli się przez \(5\), dając wynik równy \(4n^2+6n+1\) i resztę równą \(2\). Warto też dodać, że wartość \(4n^2+6n+1\) jest na pewno liczbą naturalną, ponieważ \(n\) jest liczbą naturalną, a suma liczb naturalnych daje na pewno liczbę naturalną.
Teoria:
W trakcie opracowania
materiał edukacyjny - CKE