Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
Matura próbna z matematyki (poziom podstawowy) - Operon 2015 Zadanie 27 z 1474
Zadanie nr 27. (2pkt)
Rozwiąż nierówność \(-x^2+8x-20\lt0\).
Odpowiedź:
\(x\in\mathbb{R}\)
Rozwiązanie:
Krok 1. Obliczenie miejsc zerowych wielomianu.
Naszą nierówność obliczymy standardowo metodą delty:
Współczynniki: \(a=-1,\;b=8,\;c=-20\)
$$Δ=b^2-4ac=8^2-4\cdot(-1)\cdot(-20)=64-80=-16$$
Krok 2. Szkicowanie wykresu paraboli.
To, że wyszła nam ujemna delta nie oznacza, że nierówność nie ma rozwiązań lub że w ogóle nie istnieje. Oznacza to tylko tyle, że nie będziemy mieć miejsc zerowych. Parabola będzie mieć ramiona skierowane do dołu (bo współczynnik \(a\) jest ujemny), zatem całość będzie wyglądać mniej więcej w ten sposób:
Krok 3. Odczytanie rozwiązania.
Szukamy wartości mniejszych od zera i okazuje się, że nasza cała parabola jest pod osią iksów. To oznacza, że jakiejkolwiek liczby nie podstawimy do nierówności, to otrzymamy zawsze wynik ujemny, zatem rozwiązaniem tej nierówności jest po prostu zbiór liczb rzeczywistych \(x\in\mathbb{R}\).
Teoria:
W trakcie opracowania
matura próbna - Operon