Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
Matura z matematyki (poziom podstawowy) - Czerwiec 2011 Zadanie 29 z 2341
Zadanie nr 29. (2pkt)
Rzucamy dwa razy symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo zdarzenia \(A\) polegającego na tym, że liczba oczek w pierwszym rzucie jest o \(1\) mniejsza od liczby oczek w drugim rzucie.
Odpowiedź:
\(P(A)=\frac{5}{36}\)
Rozwiązanie:
Krok 1. Ustalenie liczby wszystkich możliwych zdarzeń elementarnych.
Na każdej kostce może wypaść jeden z sześciu wyników, a skoro rzucamy niezależnie dwoma kostkami, to liczba wszystkich kombinacji będzie równa \(|Ω|=6\cdot6=36\).
Krok 2. Ustalenie liczby zdarzeń sprzyjających.
Sprzyjającymi zdarzeniami (czyli takimi, które spełniają warunki naszego zadania) będą następujące rzuty:
$$(1,2),(2,3),(3,4),(4,5),(5,6)$$
To oznacza, że tylko pięć przypadków spełnia warunki zadania, stąd też możemy napisać, że \(|A|=5\).
Krok 3. Obliczenie prawdopodobieństwa.
Prawdopodobieństwo obliczymy korzystając ze wzoru:
$$P(A)=\frac{|A|}{|Ω|}=\frac{5}{36}$$
Teoria:
W trakcie opracowania
matura dodatkowa - CKE