{tytul} Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
MATEMA tix .pl
Matematyczne wyzwania
Arkusz 2019
Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów

Arkusz 2019

Matura z matematyki (poziom podstawowy) - Maj 2019 Zadanie 30 z 34
Zadanie nr 30. (2pkt)
Ze zbioru liczb \(\{1, 2, 3, 4, 5\}\) losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia \(A\) polegającego na wylosowaniu liczb, których iloczyn jest liczbą nieparzystą.
Odpowiedź:      

\(P(A)=\frac{9}{25}\)

Rozwiązanie:      
Krok 1. Ustalenie liczby zdarzeń elementarnych. Korzystając z reguły mnożenia możemy stwierdzić, że wszystkich par jakie możemy wylosować będziemy mieć dokładnie: \(5\cdot5=25\). W związku z tym \(Ω=25\). Krok 2. Obliczenie liczby zdarzeń sprzyjających. Zdarzeniem sprzyjającym jest wylosowanie takich liczb, których iloczyn da liczbę nieparzystą. Przykładowo więc wylosowanie \((3;5)\) jest zdarzeniem sprzyjającym, bo \(3\cdot5=15\), ale już \((3;4)\) zdarzeniem sprzyjającym nie będzie, bo \(3\cdot4=12\). Powinniśmy więc dostrzec, że aby iloczyn dwóch liczb był liczbą nieparzystą, to obydwa czynniki muszą być nieparzyste, czyli w pierwszym losowaniu musi nam wypaść \(1\), \(3\) lub \(5\) i tak samo w drugim losowaniu musimy mieć \(1\), \(3\) lub \(5\). W związku z tym zgodnie z regułą mnożenia takich par będziemy mieć: \(3\cdot3=9\). Możemy więc zapisać, że \(A=9\). Krok 3. Obliczenie prawdopodobieństwa. Skoro mamy \(9\) zdarzeń sprzyjających, a wszystkich zdarzeń elementarnych jest \(25\), to prawdopodobieństwo wylosowania liczb spełniających warunki zadania będzie równe: $$P(A)=\frac{9}{25}$$
Teoria:      
W trakcie opracowania
matura - CKE
Matematyczne wyzwania © Copyright 2023-2026 All rights reserved
Arkusz 2019 Validator CSS Validator HTML