Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
Matura z matematyki (poziom podstawowy) - Maj 2015 Zadanie 30 z 34
Zadanie nr 30. (2pkt)
W układzie współrzędnych dane są punkty \(A=(-43,-12)\), \(B=(50,19)\). Prosta \(AB\) przecina oś \(Ox\) w punkcie \(P\). Oblicz pierwszą współrzędną punktu \(P\).
Odpowiedź:
\(P=(-7;0)\), więc pierwszą współrzędną jest \(x=-7\).
Rozwiązanie:
Krok 1. Ustalenie wzoru prostej przechodzącej przez punkty \(A\) i \(B\).
Aby poznać wzór tej prostej musimy stworzyć prosty układ równań. Do wzoru ogólnego w postaci \(y=ax+b\) podstawimy współrzędne punktu \(A\), a następnie punktu \(B\). Otrzymamy w ten sposób:
\begin{cases}
-12=-43a+b \ ,\
19=50a+b
\end{cases}
Możemy ten układ rozwiązać w dowolny sposób, ale najprościej jest odjąć go od siebie stronami, dzięki czemu pozbędziemy się \(b\), zatem:
$$-31=-93a \ ,\
a=\frac{1}{3}$$
Znając współczynnik \(a\) możemy teraz podstawić go do któregoś z równań i wyznaczyć w ten sposób współczynnik \(b\).
$$19=50\cdot\frac{1}{3}+b \ ,\
\frac{57}{3}=\frac{50}{3}+b \ ,\
b=\frac{7}{3}$$
Wzór prostej przechodzącej przez punkty \(A\) i \(B\) to: \(y=\frac{1}{3}x+\frac{7}{3}\).
Krok 2. Obliczenie pierwszej współrzędnej punktu \(P\).
Skoro nasza prosta przecina oś \(Ox\) w punkcie \(P\), to znaczy że \(P=(x;0)\). Musimy wyznaczyć współrzędną \(x\) punktu \(P\), więc wystarczy przyrównać wzór naszej prostej do zera:
$$\frac{1}{3}x+\frac{7}{3}=0 \quad\bigg/\cdot3 \ ,\
x+7=0 \ ,\
x=-7$$
To oznacza, że pierwszą współrzędną jest \(x=-7\), a pełne współrzędne tego punktu to \(P=(-7;0)\).
Teoria:
W trakcie opracowania
matura - CKE