{tytul} Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
MATEMA tix .pl
Matematyczne wyzwania
Arkusz 2018
Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów

Arkusz 2018

Matura z matematyki (poziom podstawowy) - Maj 2018 Zadanie 30 z 34
Zadanie nr 30. (2pkt)
Do wykresu funkcji wykładniczej, określonej dla każdej liczby rzeczywistej \(x\) wzorem \(f(x)=a^x\) (gdzie \(a\gt0\) i \(a\ne1\)), należy punkt \(P=(2,9)\). Oblicz \(a\) i zapisz zbiór wartości funkcji \(g\), określonej wzorem \(g(x)=f(x)-2\).
Odpowiedź:      

\(a=3\) oraz \(y\in(-2;+\infty)\)

Rozwiązanie:      
Krok 1. Wyznaczenie wartości \(a\). Skoro do funkcji \(f(x)=a^x\) należy punkt \(P=(2,9)\) to podstawiając \(x=2\) oraz \(y=9\) będziemy w stanie wyznaczyć wartość \(a\). Zatem: $$f(x)=a^x \           ,\ 9=a^2 \           ,\ a=3 \quad\lor\quad a=-3$$ Wartość ujemną odrzucamy, bo z założeń wynika, że \(a\gt0\). Zatem zostaje nam jedynie \(a=3\). Krok 2. Określenie zbioru wartości funkcji \(g\). Funkcja wykładnicza w postaci \(f(x)=3^x\) przyjmuje zawsze wartości dodatnie. Zbiorem wartości funkcji \(f\) byłby więc przedział \((0;+\infty)\). Nasza funkcja \(g\) jest przekształceniem funkcji \(f\), a dokładnie jest przesunięta o dwie jednostki w dół. To oznacza, że zbiorem wartości funkcji \(g\) będzie przedział \((-2;+\infty)\).
Teoria:      
W trakcie opracowania
matura - CKE
Matematyczne wyzwania © Copyright 2023-2026 All rights reserved
Arkusz 2018 Validator CSS Validator HTML