Zbiory arkuszy egzaminacyjnych z matematyki dla ósmoklasistów. Znajdziesz tu różnorodne zadania egzaminacyjne, przykładowe arkusze, rozwiązania zadań, testy z matematyki oraz wiele innych przydatnych materiałów
Egzamin gimnazjalny 2016 - matematyka Zadanie 22 z 23
Zadanie nr 22. (3pkt)
Uczniowie klas trzecich pewnego gimnazjum pojechali na wycieczkę pociągiem. W każdym zajętym przez nich przedziale było ośmioro uczniów. Jeśli w każdym przedziale byłoby sześcioro uczniów, to zajęliby oni o \(3\) przedziały więcej. Ilu uczniów pojechało na tę wycieczkę?
Odpowiedź:
Na wycieczkę pojechało \(72\) uczniów.
Rozwiązanie:
Krok 1. Wprowadzenie poprawnych oznaczeń.
\(x\) - liczba ośmioosobowych przedziałów
\(8x\) - liczba uczniów w pociągu z ośmioosobowymi (bo w każdym przedziale jest ośmiu uczniów)
\(x+3\) - liczba sześcioosobowych przedziałów
\(6(x+3)\) - liczba uczniów w pociągu z sześcioosobowymi przedziałami
Krok 2. Obliczenie liczby przedziałów ośmioosobowych.
Liczba uczniów jest niezmienna, więc między wartościami \(8x\) oraz \(6(x+3)\) możemy postawić znak równości. To pozwoli nam obliczyć niewiadomą \(x\), czyli liczbę przedziałów ośmioosobowych.
$$8x=6(x+3) \ ,\
8x=6x+18 \ ,\
2x=18 \ ,\
x=9$$
To oznacza, że jest dziewięć przedziałów ośmioosobowych.
Krok 3. Obliczenie liczby uczniów.
Skoro wiemy, że było dziewięć przedziałów ośmioosobowych, to znaczy, że uczniów było:
$$9\cdot8=72$$
Teoria:
W trakcie opracowania
CKE