Zbiory arkuszy maturalnych z matematyki. Nasza strona oferuje bogaty wybór przykładowych arkuszy, rozwiązań zadań, testów z matematyki oraz wiele innych materiałów
Matura próbna z matematyki (poziom podstawowy) - Operon 2018 Zadanie 30 z 948
Zadanie nr 30. (2pkt)
Do okręgu o środku w punkcie \(O\) poprowadzono z trzech punktów \(A\), \(B\) i \(C\) leżących na okręgu styczne, które przecięły się w punktach \(D\), \(E\) i \(F\) (zobacz rysunek). Wykaż, że jeżeli \(|AF|=x\), to obwód trójkąta \(DEF\) jest równy \(2x\).
Odpowiedź:
Udowodniono korzystając z własności stycznych do okręgu.
Rozwiązanie:
Krok 1. Dostrzeżenie odcinków o jednakowej długości.
Z własności stycznych do okręgu powinniśmy zauważyć trzy pary boków o identycznych miarach:
$$|DC|=|AD| \ ,\
|CE|=|BE| \ ,\
|AF|=|BF|$$
Krok 2. Rozpisanie długości obwodu trójkąta.
Patrząc się na rysunek możemy zapisać, że obwód trójkąta będzie równy:
$$Obw=|EF|+|DF|+|DC|+|CE|$$
W pierwszym kroku zapisaliśmy sobie, że odcinek \(DC\) ma taką samą miarę jak odcinek \(AD\) oraz że odcinek \(CE\) ma taką samą miarę jak odcinek \(BE\). Podmieniając te dwa odcinki w naszym powyższym zapisie otrzymamy:
$$Obw=\color{green}{|EF|}+\color{blue}{|DF|+|AD|}+\color{green}{|BE|}$$
Teraz spójrzmy na nasze działanie. Z treści zadania wynika, że odcinek \(AF\) ma długość \(x\), a na odcinek \(AF\) składa się suma \(\color{blue}{|AD|+|DF|}\). Podobnie jest z odcinkiem \(BF\) na którego składa się suma \(\color{green}{|BE|+|EF|}\). To by oznaczało, że:
$$Obw=|AF|+|BF| \ ,\
Obw=x+x \ ,\
Obw=2x$$
Otrzymaliśmy oczekiwaną wartość, zatem dowodzenie można uznać za zakończone.
Teoria:
W trakcie opracowania
matura próbna - Operon