Dana jest funkcja kwadratowa \(f\), której fragment wykresu przedstawiono w kartezjańskim układzie współrzędnych \((x,y)\) na rysunku obok. Wierzchołek paraboli, która jest wykresem funkcji \(f\), oraz punkty przecięcia paraboli z osiami układu współrzędnych mają współrzędne całkowite.
Zadanie 1.
Funkcja \(g\) jest określona za pomocą funkcji \(f\) następująco: \(g(x)=f(x-2)\). Wykres funkcji \(g\) przedstawiono na rysunku:
A.
Wzór funkcji kwadratowej można zapisać w postaci ogólnej, kanonicznej lub iloczynowej (o ile istnieje).
Zadanie 1.
Dana jest funkcja kwadratowa \(y=f(x)\), której fragment wykresu przedstawiono w kartezjańskim układzie współrzędnych \((x,y)\) na rysunku poniżej.
Dokończ zdanie. Zaznacz właściwą odpowiedź spośród podanych, jeżeli wiadomo, że jeden ze wzorów podanych w odpowiedziach A-D to wzór funkcji \(f\).
Funkcja
Osią symetrii paraboli będącej wykresem funkcji kwadratowej \(f(x)=ax^2+bx+3\), gdzie \(a\neq0\), jest prosta o równaniu \(x=-2\). Wierzchołek paraboli leży na prostej o równaniu \(y=-x+2\). Wyznacz wzór funkcji \(f\) w postaci ogólnej lub kanonicznej.